Summary

Cationic Nanoemulsion-Encapsulated Retinoic Acid as an Adjuvant to Promote OVA-Specific Systemic and Mucosal Responses

Published: February 23, 2024
doi:

Summary

In this protocol, we developed a cationic nanoemulsion-encapsulated retinoic acid (RA) to be used as an adjuvant to promote antigen-specific systemic and mucosal responses. By adding the FDA-approved RA to the nanoemulsion, antigen-specific sIgA was promoted in the vagina and small intestine after intramuscular injection of the nanoemulsion.

Abstract

Cationic nanostructures have emerged as an adjuvant and antigen delivery system that enhances dendritic cell maturation, ROS generation, and antigen uptake and then promotes antigen-specific immune responses. In recent years, retinoic acid (RA) has received increasing attention due to its effect in activating the mucosal immune response; however, in order to use RA as a mucosal adjuvant, it is necessary to solve the problem of its dissolution, loading, and delivery. Here, we describe a cationic nanoemulsion-encapsulated retinoic acid (CNE-RA) delivery system composed of the cationic lipid 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOTAP), retinoic acid, squalene as the oil phase, polysorbate 80 as surfactant, and sorbitan trioleate 85 as co-surfactant. Its physical and chemical properties were characterized using dynamic light scattering and a spectrophotometer. Immunization of mice with the mixture of antigen (ovalbumin, OVA) and CNE-RA significantly elevated the levels of anti-OVA secretory immunoglobulin A (sIgA) in vaginal lavage fluid and the small intestinal lavage fluid of mice compared with OVA alone. This protocol describes a detailed method for the preparation, characterization, and evaluation of the adjuvant effect of CNE-RA.

Introduction

Adjuvants are often used to enhance the efficacy of a vaccine by stimulating the immune system to respond more strongly to the vaccine, thereby increasing immunity to a particular pathogen1. Nanoemulsion (NE) adjuvant refers to a colloidal dispersion system with thermodynamic stability by emulsifying a certain proportion of oil phase and aqueous phase to produce an emulsion in the form of water-in-oil (W/O) or oil-in-water (O/W)2. O/W nanoemulsion adjuvant can produce cytokines and chemokines at the injection site, induce the rapid aggregation and proliferation of important immune cells such as monocytes, neutrophils, and eosinophils, and enhance the immune response, and improve the immunogenicity of antigens3. Currently, three nanoemulsion adjuvants (MF59, AS03, and AF03) have been licensed for use in vaccines and have shown good safety and efficacy4.

However, mucosal immunity has been poorly addressed by the currently licensed adjuvant formulations in conventional parenteral vaccination5. Retinoic acid (RA) has been reported to induce intestinal homing of immune cells, but its low polarity, poor solubility in water, and poor light and thermal stability limit its use for robust enteric vaccination. Nanoemulsions offer opportunities to increase the bioavailability of highly lipophilic drugs, and the oil core of O/W emulsion adjuvants is suitable for dissolving non-polar substances such as RA6. Therefore, nanoemulsions can be used as carriers for RA in order to achieve the dual response effect of systemic immunity and mucosal immunity.

Compared to neutral or anionic delivery systems, cationic delivery systems have relatively efficient antigen encapsulation and delivery capabilities, which can enhance the immunogenicity of antigens7,8,9. The cationic surface charge of a variety of adjuvant systems is important for their adjuvant effects10,11,12. The cationic charge is an important factor in prolonging vaccine retention at the injection site, increasing antigen presentation and prolonging the stimulation of cellular immunity in the body12.

Based on the above considerations, we developed a cationic nanoemulsion to effectively co-deliver RA and antigens. The particle size and zeta potential of the nanoemulsion were determined using dynamic light scattering (DLS), and the systemic and mucosal immune responses of the nanoemulsion combined with OVA were evaluated by intramuscular injection13.

Protocol

The animal experiments were performed in accordance with the Guide to the Use and Care of Laboratory Animals and approved by the Laboratory Animal Welfare and Ethics Committee of the Third Military Medical University. 1. Preparation of nanoemulsions (NEs) For aqueous phase preparation, dissolve 0.15 g of polysorbate 80 in 28.2 mL of phosphate buffered saline (PBS) while stirring at 40 °C. For oil phase preparation, use the oil phase formulation of th…

Representative Results

In total, four nanoemulsion formulations were prepared and characterized by their particle size (Figure 1), their zeta potential and their encapsulation efficiency as presented in Table 2. The particle size was concentrated around 160-190nm and the addition of DOTAP reversed the Zeta potential of nanoemulsion. OVA-specific serum IgG and its subgroup antibody level in serum were detected 2 weeks post third immunization. The nanoemulsion adjuvant vaccine significantly increase…

Discussion

In this protocol, we developed a cationic nanoemulsion-encapsulated retinoic acid to be used as an adjuvant to promote antigen-specific systemic and mucosal responses. Compared to traditional NE adjuvants, it has the following two advantages. First, in general, the surface of O/W NEs has a high negative charge, which makes it difficult to directly load antigens. Cationic NEs can effectively adsorb peptide or protein antigens and enhance the specific immunogenicity. Secondly, experience in traditional vaccine research has…

Declarações

The authors have nothing to disclose.

Acknowledgements

This study was funded by Key Program of Chongqing Natural Science Foundation (No. cstc2020jcyj-zdxmX0027) and Chinese National Natural Science Foundation Project (No. 32270988).

Materials

1640 medium GIBCO, USA C11875500BT
450 nm Stop Solution for TMB Substrate Abcam ab171529-1000 mL
Automated Cell Counter Countstar, China IC1000
BSA Sigma-Aldrich, USA B2064-100G
Centrifuge 5810 R Eppendorf, Germany 5811000398
Danamic Light Scattering Malvern Zetasizer Nano S90
DOTAP CordenPharma, Switzerland O02002
ELISpot Plus: Mouse IFN-gamma (ALP) mabtech ab205719
Fetal Bovine Serum GIBCO, USA 10099141C
Full-function Microplate Reader Thermo Fisher Scientific, USA VL0000D2
Goat Anti-Mouse IgG1(HRP) Abcam ab97240-1mg
Goat Anti-Mouse IgA alpha chain (HRP) Abcam ab97235-1mg
Goat Anti-Mouse IgG H&L (HRP) Abcam Ab205720-500ug
Goat Anti-Mouse IgG2a heavy chain (HRP) Abcam ab97245-1mg
High pressure homogenizer ATS
MONTANE 85 PPI SEPPIC, France L12910
MONTANOX 80 PPI SEPPIC, France 36372K
OVA257–264 Shanghai Botai Biotechnology Co., Ltd. NA
OVA323-339 Shanghai Botai Biotechnology Co., Ltd. NA
Phosphate buffer saline ZSGB-bio ZLI-9061
Red Blood Cell Lysis Buffer Solarbio, China R1010
retinoic acid TCI, Japan TCI-R0064-5G
Squalene Sigma, USA S3626
T10 basic Ultra-Turrax IKA, Germany
TMB ELISA Substrate Abcam ab171523-1000ml
trypsin inhibitor Diamond A003570-0100
Tween-20 Macklin, China 9005-64-5
Ultraviolet spectrophotometer Hitachi U-3900

Referências

  1. Pulendran, B., Arunachalam, P. S., O’Hagan, D. T. Emerging concepts in the science of vaccine adjuvants. Nat Rev Drug Discov. 20 (6), 454-475 (2021).
  2. Pandey, P., Gulati, N., Makhija, M., Purohit, D., Dureja, H. Nanoemulsion: A novel drug delivery approach for enhancement of bioavailability. Recent Pat Nanotech. 14 (4), 276-293 (2020).
  3. Chen, W. L., et al. Disintegration and cancer immunotherapy efficacy of a squalane-in-water delivery system emulsified by bioresorbable poly(ethylene glycol)-block-polylactide. Biomaterials. 35 (5), 1686-1695 (2014).
  4. Iwasaki, A., Omer, S. B. Why and how vaccines work. Cell. 183 (2), 290-295 (2020).
  5. Spadoni, I., Fornasa, G., Rescigno, M. Organ-specific protection mediated by cooperation between vascular and epithelial barriers. Nat Rev Immunol. 17 (12), 761-773 (2017).
  6. Singh, Y., et al. Nanoemulsion: Concepts, development and applications in drug delivery. J Cont Release. 252, 28-49 (2017).
  7. Yan, W. L., Chen, W. S., Huang, L. Mechanism of adjuvant activity of cationic liposome: Phosphorylation of a MAP kinase, ERK and induction of chemokines. Mol Immunol. 44 (15), 3672-3681 (2007).
  8. Korsholm, K. S., et al. The adjuvant mechanism of cationic dimethyldioctadecylammonium liposomes. Immunology. 121 (2), 216-226 (2007).
  9. Agger, E. M., et al. Cationic liposomes formulated with synthetic mycobacterial cordfactor (CAF01): A versatile ddjuvant for vaccines with different immunological requirements. Plos One. 3 (9), e3116 (2008).
  10. Slutter, B., et al. Nasal vaccination with N-trimethyl chitosan and PLGA based nanoparticles: Nanoparticle characteristics determine quality and strength of the antibody response in mice against the encapsulated antigen. Vaccine. 28 (38), 6282-6291 (2010).
  11. Nochi, T., et al. Nanogel antigenic protein-delivery system for adjuvant-free intranasal vaccines. Nat Mater. 9 (8), 685-685 (2010).
  12. Henriksen-Lacey, M., et al. Liposomal cationic charge and antigen adsorption are important properties for the efficient deposition of antigen at the injection site and ability of the vaccine to induce a CMI response. J Control Release. 145 (2), 102-108 (2010).
  13. Zhong, X. F., et al. Nanovaccines mediated subcutis-to-intestine cascade for improved protection against intestinal infections. Small. 18 (1), e2105530 (2022).
  14. Mora, J. R., et al. Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells. Science. 314 (5802), 1157-1160 (2006).
  15. Iwata, M., et al. Retinoic acid imprints gut-homing specificity on T cells. Immunity. 21 (4), 527-538 (2004).
  16. Hammerschmidt, S. I., et al. Retinoic acid induces homing of protective T and B cells to the gut after subcutaneous immunization in mice. J Clin Invest. 121 (8), 3051-3061 (2011).
  17. Burger, C., Shahzad, Y., Brümmer, A., Gerber, M., du Plessis, J. Traversing the skin barrier with nano-emulsions. Curr Drug Deliv. 14 (4), 458-472 (2017).
  18. Lodaya, R. N., et al. Formulation design, optimization and evaluations of an α-tocopherol-containing self-emulsified adjuvant system using inactivated influenza vaccine. J Cont Release. 316, 12-21 (2019).
  19. Carmona-Ribeiro, A. M., Pérez-Betancourt, Y. Cationic nanostructures for vaccines design. Biomimetics. 5 (3), 32 (2020).
  20. Lam, K., et al. trialkyl ionizable lipids are versatile lipid-nanoparticle components for therapeutic and vaccine applications. Adv Mater. 35 (15), e2209624 (2023).
  21. Nie, T. Q., et al. Surface coating approach to overcome mucosal entrapment of DNA nanoparticles for oral gene delivery of glucagon-like peptide 1. Acs Appl Mater Inter. 11 (33), 29593-29603 (2019).
  22. Lou, G., et al. Delivery of self-amplifying mRNA vaccines by cationic lipid nanoparticles: The impact of cationic lipid selection. J Cont Release. 325, 370-379 (2020).
check_url/pt/66270?article_type=t

Play Video

Citar este artigo
Li, G., Li, H., Jin, Z., Feng, R., Deng, Y., Cheng, H., Li, H. Cationic Nanoemulsion-Encapsulated Retinoic Acid as an Adjuvant to Promote OVA-Specific Systemic and Mucosal Responses. J. Vis. Exp. (204), e66270, doi:10.3791/66270 (2024).

View Video