Summary

げっ歯類の心臓の構造を明らかにするためのライトシートイメージング

Published: March 29, 2024
doi:

Summary

このプロトコルは、高度なライトシート顕微鏡法と適応した組織透明化法を利用して、げっ歯類の心臓の複雑な心臓構造を調査し、心臓の形態形成とリモデリングの理解に大きな可能性を秘めています。

Abstract

ライトシート顕微鏡(LSM)は、心臓の複雑な3次元(3D)構造を理解する上で極めて重要な役割を果たし、基本的な心臓生理学と病理学的反応に関する重要な洞察を提供します。ここでは、マウスモデルにおける心臓のマイクロアーキテクチャを解明するためのLSM技術の開発と実装を掘り下げます。この手法は、カスタマイズされたLSMシステムと組織透明化技術を統合し、体積イメージングのための心臓組織内の光散乱を軽減します。従来のLSMと画像スティッチングおよびマルチビューデコンボリューションアプローチを組み合わせることで、心臓全体をキャプチャできます。軸方向の分解能と視野(FOV)の間の固有のトレードオフに対処するために、焦点の合っていない光を最小限に抑え、伝搬方向全体で心臓を均一に照らす軸方向に掃引ライトシート顕微鏡(ASLM)法をさらに導入します。一方、iDISCOなどの組織透明化法は、光の透過性を高め、深部構造の可視化を容易にし、心臓全体の心筋を包括的に検査することができます。提案されたLSMと組織透明化法の組み合わせは、げっ歯類の心臓の心臓構造を解明する上で研究者にとって有望なプラットフォームを提供し、心臓の形態形成とリモデリングの理解に大きな可能性を秘めています。

Introduction

心不全は、主に成熟した心筋細胞の再生能力の欠如により、世界中で依然として主要な死亡原因となっています1。心臓の複雑な構造は、その機能において重要な役割を果たし、発達過程への洞察を提供します。心筋梗塞に対する心臓の形態形成やリモデリングの根本的な過程を解明するためには、心臓の構造を深く理解することが不可欠です。近年の進歩により、新生児マウスは損傷後に心機能を回復できるが、成体マウスにはそのような再生能力がないことが示されている2。これにより、マウスモデルの構造的および機能的異常に関連する手がかりを調査するための基盤が確立されます。共焦点顕微鏡などの従来のイメージング方法には、透過深度の制限、低速な点走査方式、レーザー光への長時間の曝露による光損傷などの技術的な制限があります。これらは、無傷の心臓の包括的な3次元(3D)イメージングを妨げます。これに関連して、ライトシート顕微鏡(LSM)は強力なソリューションとして浮上し、高速イメージング、写真による損傷の低減、および卓越した光学セクショニング機能の利点を提供します3,4,5。LSMのユニークな特徴は、従来の技術の限界を克服するための有望な方法として位置付けられ、心臓の発生とリモデリングプロセスに関する前例のない洞察を提供します6,7,8

このプロトコルでは、高度なLSMと適応した組織透明化アプローチ9を組み合わせたイメージング戦略を導入し、特定の標識や機械的切片化を必要とせずにマウス心臓全体のイメージングを可能にします。さらに、従来のLSMイメージングは、マルチビューデコンボリューション10または軸方向に掃引されたライトシート顕微鏡(ASLM)技術11,12,13,14,15によって強化され、軸方向の分解能を向上させることができることを提案する。さらに、これらの方法のいずれかと画像スティッチングを統合することで、空間分解能と視野(FOV)のトレードオフを効果的に克服し、成体マウスの心臓のイメージングを進歩させることができます。疎水性、親水性、およびハイドロゲルベースの方法を含む多数の組織透明化アプローチを組み込むことにより、心臓全体の形態を捕捉するためのより深い光透過が可能になります16,17,18,19。

現在のLSMシステムとは複数のクリアリング方法と互換性がありますが、目標は、脂質を屈折率に近い媒体に置き換えることにより、光子散乱を最小限に抑え、心臓などの組織への光の透過性を高めることです。iDISCOは代表20,21として選択され、その迅速な処理と高い透明性により、このプロトコルの自家蛍光イメージングに適合しました(図1A)。全体として、高度なLSMアプローチと組織除去技術の統合は、げっ歯類の心臓の複雑な心臓解剖学的構造を解明するための有望なフレームワークを提供し、心臓の形態形成と病因の理解を深めるための大きな可能性を秘めています。

Protocol

動物実験は、テキサス大学ダラス校の動物管理・使用委員会(IACUC #21-03)の監督下で承認され、実施されています。この研究では、出生後1日目(P1)の新生児と8週齢の成人を含むC57BL6マウスを使用しました。雄と雌の間に差は観察されませんでした。すべてのデータ取得と画像後処理は、研究または教育ライセンスを取得したオープンソースソフトウェアまたはプラットフォームを使用して実行?…

Representative Results

LSMは、明視野および点走査技術6,8,38,39,40のような他の光学イメージング方法とは対照的に、光損傷のリスクが最小限であり、高い空間分解能、および光学切片化により、心臓研究31,32,33,34,35,36,37を促進することが実証されている</su…

Discussion

イメージング、計算、および組織透明化方法の進歩は、心臓の構造と機能を広範囲に調査する比類のない機会を提供しました。これは、無傷のげっ歯類の心臓モデルを使用して、心臓の形態形成と病因の理解を深める大きな可能性を秘めています。同様のアプローチを用いたゼブラフィッシュの心臓のin vivo研究40,41,42,43とは対照的に、高度なLSM技術と組織透明化法の統合によ?…

Declarações

The authors have nothing to disclose.

Acknowledgements

動物モデルを惜しみなく共有してくれたUTサウスウェスタンメディカルセンターのエリックオルソン博士のグループに感謝の意を表します。UTダラスのDインキュベーターメンバーから提供されたすべての建設的なコメントに感謝します。この研究は、NIH R00HL148493(Y.D.)、R01HL162635(Y.D.)、およびUTダラスSTARSプログラム(Y.D.)の支援を受けました。

Materials

1% Agarose
Low melting point agarose Thermo Fisher 16520050
Deionized water
Chemicals for tissue clearing 
5-Amino-1,3,3-trimethylcyclohexanemethylamine, mixture of cis and trans Sigma-Aldrich 118184
D.E.R.™ 332 Sigma-Aldrich 31185
D.E.R.™ 736 Sigma-Aldrich 31191
Dibenzyl ether (DBE) Sigma-Aldrich 33630
Dichloromethane (DCM) Sigma-Aldrich 270997
Fluorescent beads Spherotech FP-0556-2
Hydrogen peroxide (H2O2) Sigma-Aldrich 216736
Methanol Sigma-Aldrich 439193
Paraformaldehyde (PFA) Thermo Fisher 47392
Phosphate Buffered Saline (PBS) Sigma-Aldrich 79383
Potassium Chloride (KCl) Sigma-Aldrich P3911
Software and algorithms
Amira Thermo Fisher Scientific 2021.2
BigStitcher Hörl et al.22
Fiji-ImageJ Schindelin et al.20 1.54f
HCImage Live Hamamatsu Photonics 4.6.1.2
LabVIEW National Instruments Corporation 2017 SP1
Key components of the customized light-sheet system
0.63 – 6.3X Zoom body Olympus MVX-ZB10 
10X Illumination objective Nikon MRH00105
1X detection objective Olympus MV PLAPO 1X/0.25 
473nm DPSS Laser Laserglow Technologies LRS-0473-PFM-00100-05
532nm DPSS laser Laserglow Technologies LRS-0532-PFM-00100-05
589 nm DPSS laser Laserglow Technologies LRS-0589-GFF-00100-05
BNC connector National Instrument BNC-2110
Cylindrical lens Thorlabs ACY254-050-A
DC-Motor Controller, 4 axes Physik Instrumente C-884.4DC
ETL Optotune EL-16-40-TC-VIS-5D-1-C
ETL Cable Optotune CAB-6-300
ETL Lens Driver Optotune EL-E-4i
Filter Chroma ET525/30
Filter Chroma ET585-40
Filter Chroma ET645-75
Filter wheel  Shutter Instrument LAMBDA 10-B
Motorized translation stage Physik Instrumente L-406.20DG10
Motorized translation stage Physik Instrumente L-406.40DG10
Motorized translation stage Physik Instrumente M-403.4PD
NI multifunction I/O National Instrument PCIe-6363
sCMOS camera Hamamatsu C13440-20CU
Stepper motor Pololu 1474
Tube lens Olympus MVX-TLU

Referências

  1. Sadek, H., Olson, E. N. Toward the goal of human heart regeneration. Cell Stem Cell. 26, 7-16 (2020).
  2. Porrello, E. R., et al. Transient regenerative potential of the neonatal mouse heart. Science. 331, 1078-1080 (2011).
  3. Stelzer, E. H. K. K., et al. Light sheet fluorescence microscopy. Nat Rev Methods Prim. 1, 73 (2021).
  4. Girkin, J. M., Carvalho, M. T. The light-sheet microscopy revolution. J Opt. 20, 053002 (2018).
  5. Power, R. M., Huisken, J. A guide to light-sheet fluorescence microscopy for multiscale imaging. Nat Methods. 14, 360-373 (2017).
  6. Ding, Y., et al. Multiscale light-sheet for rapid imaging of cardiopulmonary system. JCI Insight. 3, e121396 (2018).
  7. Ding, Y., et al. Light-sheet fluorescence imaging to localize cardiac lineage and protein distribution. Sci Rep. 7, 42209 (2017).
  8. Fei, P., et al. Cardiac light-sheet fluorescent microscopy for multi-scale and rapid imaging of architecture and function. Sci Rep. 6, 1-12 (2016).
  9. Richardson, D. S., Lichtman, J. W. Clarifying tissue clearing. Cell. 162, 246-257 (2015).
  10. Stelzer, E. H. K., Huisken, J., Swoger, J., Greger, K., Verveer, P. Multi-view image fusion improves resolution in three-dimensional microscopy. Opt Express. 15 (13), 8029-8042 (2007).
  11. Dean, K. M., Roudot, P., Welf, E. S., Danuser, G., Fiolka, R. Deconvolution-free subcellular imaging with axially swept light sheet microscopy. Biophys J. 108, 2807-2815 (2015).
  12. Dean, K. M., et al. Isotropic imaging across spatial scales with axially swept light-sheet microscopy. Nat Protoc. 17, 2025-2053 (2022).
  13. Hedde, P. N., Gratton, E. Selective plane illumination microscopy with a light sheet of uniform thickness formed by an electrically tunable lens. Microsc Res Tech. 81, 924 (2018).
  14. Voigt, F. F., et al. The mesoSPIM initiative: open-source light-sheet microscopes for imaging cleared tissue. Nat Meth. 16, 1105-1108 (2019).
  15. Giardini, F., et al. Mesoscopic optical imaging of whole mouse heart. J Vis Exp. (176), e62795 (2021).
  16. Sodimu, O., et al. Light sheet imaging and interactive analysis of the cardiac structure in neonatal mice. J Biophotonics. 16, e202200278 (2023).
  17. Ariel, P. A beginner’s guide to tissue clearing. Int J Biochem Cell Biol. 84, 35-39 (2017).
  18. Richardson, D. S., et al. Tissue clearing. Nat Rev Methods Prim. 1, 1-24 (2021).
  19. Ueda, H. R., et al. Tissue clearing and its applications in neuroscience. Nat Rev Neurosci. 21, 61-79 (2020).
  20. Renier, N., et al. iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging. Cell. 159, 896-910 (2014).
  21. Kirchner, K. N., et al. A hydrophobic tissue clearing method for rat brain tissue. J Vis Exp. (166), e61821 (2020).
  22. Ding, Y., et al. Light-sheet fluorescence microscopy for the study of the murine heart. J Vis Exp. (139), e57769 (2018).
  23. Schindelin, J., Rueden, C. T., Hiner, M. C., Eliceiri, K. W. The ImageJ ecosystem: An open platform for biomedical image analysis. Mol Reprod Dev. 82, 518-529 (2015).
  24. Hörl, D., et al. BigStitcher: reconstructing high-resolution image datasets of cleared and expanded samples. Nat Methods. 16, 870-874 (2019).
  25. Becker, K., et al. Reduction of Photo Bleaching and Long Term Archiving of Chemically Cleared GFP-Expressing Mouse Brains. PLoS One. 9, e114149 (2014).
  26. Preibisch, S., et al. Efficient Bayesian-based multiview deconvolution. Nat. Methods. 11, 645-648 (2014).
  27. Guo, M., et al. Rapid image deconvolution and multiview fusion for optical microscopy. Nat. Biotechnol. 38, 1337-1346 (2020).
  28. Tomer, R., Khairy, K., Amat, F., Keller, P. J. Quantitative high-speed imaging of entire developing embryos with simultaneous multiview light-sheet microscopy. Nat Methods. 9, 755-763 (2012).
  29. Fahrbach, F. O., Voigt, F. F., Schmid, B., Helmchen, F., Huisken, J. Rapid 3D light-sheet microscopy with a tunable lens. Opt Express. 21, 21010-21026 (2013).
  30. Liu, Y., Rollins, A. M., Jenkins, M. W. CompassLSM: axially swept light-sheet microscopy made simple. Biomed Opt Express. 12, 6571-6589 (2021).
  31. Kolesová, H., Olejníčková, V., Kvasilová, A., Gregorovičová, M., Sedmera, D. Tissue clearing and imaging methods for cardiovascular development. iScience. 24 (4), 102387 (2021).
  32. Sands, G. B., et al. It’s clearly the heart! Optical transparency, cardiac tissue imaging, and computer modelling. Prog Biophys Mol Biol. 168, 18-32 (2022).
  33. Wilson, A. J., Sands, G. B., LeGrice, I. J., Young, A. A., Ennis, D. B. Muscle mechanics and ventricular function: Myocardial mesostructure and mesofunction. Am J Physiol – Hear Circ Physiol. 323, H257 (2022).
  34. Lee, S. E., et al. Three-dimensional cardiomyocytes structure revealed by diffusion tensor imaging and its validation using a tissue-clearing technique. Sci. Reports. 8, 1-11 (2018).
  35. Sereti, K. I., et al. Analysis of cardiomyocyte clonal expansion during mouse heart development and injury. Nat Commun. 9, 754 (2018).
  36. Olianti, C., et al. 3D imaging and morphometry of the heart capillary system in spontaneously hypertensive rats and normotensive controls. Sci. Reports. 10, 1-9 (2020).
  37. Olianti, C., et al. Optical clearing in cardiac imaging: A comparative study. Prog Biophys Mol Biol. 168, 10-17 (2022).
  38. Baek, K. I., et al. Advanced microscopy to elucidate cardiovascular injury and regeneration: 4D light-sheet imaging. Prog Biophys Mol Biol. 138, 105-115 (2018).
  39. Merz, S. F., et al. Contemporaneous 3D characterization of acute and chronic myocardial I/R injury and response. Nat Commun. 10, 1-14 (2019).
  40. Zhang, X., et al. 4D Light-sheet imaging and interactive analysis of cardiac contractility in zebrafish larvae. APL Bioeng. 7, 26112 (2023).
  41. Lee, J., et al. 4-Dimensional light-sheet microscopy to elucidate shear stress modulation of cardiac trabeculation. J Clin Invest. 126, 1679-1690 (2016).
  42. Zhang, X., Alexander, R. V., Yuan, J., Ding, Y. Computational Analysis of Cardiac Contractile Function. Curr Cardiol Rep. 24, 1983-1994 (2022).
  43. Zhang, X., et al. 4D Light-sheet Imaging of Zebrafish Cardiac Contraction. J Vis Exp. (203), e66263 (2024).
  44. Huisken, J., Swoger, J., Del Bene, F., Wittbrodt, J., Stelzer, E. H. K. K. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science. 305, 1007-1009 (2004).
  45. Molbay, M., Kolabas, Z. I., Todorov, M. I., Ohn, T., Ertürk, A. A guidebook for DISCO tissue clearing. Mol Syst Biol. 17, 9807 (2021).
  46. Chi, J., Crane, A., Wu, Z., Cohen, P. Adipo-clear: a tissue clearing method for three-dimensional imaging of adipose tissue. J Vis Exp. (137), e58271 (2018).
  47. Wan, Y., McDole, K., Keller, P. J. Light-sheet microscopy and its potential for understanding developmental processes. Ann Rev Cell Dev Biol. 35, 655-681 (2019).
  48. Yuan, J., et al. Extended reality for biomedicine. Nat Rev Methods Prim. 3, 1-1 (2023).
  49. Ding, Y., et al. Saak transform-based machine learning for light-sheet imaging of cardiac trabeculation. IEEE Trans Biomed Eng. 68, 225-235 (2020).
  50. Buffinton, C. M., Benjamin, A. K., Firment, A. N., Moon, A. M. Myocardial wall stiffening in a mouse model of persistent truncus arteriosus. PLoS One. 12 (9), e0184678 (2017).
  51. Trincot, C. E., et al. Adrenomedullin induces cardiac lymphangiogenesis after myocardial infarction and regulates cardiac edema via Cx43. Circ Res. 124, 101 (2019).
  52. Yokoyama, T., et al. Quantification of sympathetic hyperinnervation and denervation after myocardial infarction by three-dimensional assessment of the cardiac sympathetic network in cleared transparent murine hearts. PLoS One. 12, e0182072 (2017).
  53. Coram, R. J., et al. Muscleblind-like 1 is required for normal heart valve development in vivo. BMC Dev Biol. 15, 36 (2015).
check_url/pt/66707?article_type=t

Play Video

Citar este artigo
Almasian, M., Saberigarakani, A., Zhang, X., Lee, B., Ding, Y. Light-Sheet Imaging to Reveal Cardiac Structure in Rodent Hearts. J. Vis. Exp. (205), e66707, doi:10.3791/66707 (2024).

View Video