Summary

चिप आकार scaffolds के तीन आयामी सेल की खेती के लिए Microfabrication

Published: May 12, 2008
doi:

Summary

हम तीन आयामी सेल की खेती के लिए झरझरा बहुलक चिप्स के microfabrication के लिए दो प्रक्रियाओं को प्रस्तुत करते हैं. पहले एक गर्म embossing एक विलायक वाष्प वेल्डिंग की प्रक्रिया के साथ संयुक्त है. दूसरा एक एक हाल ही में विकसित microthermoforming प्रक्रिया आयन ट्रैक निर्माण का एक महत्वपूर्ण सरलीकरण प्रमुख प्रौद्योगिकी के साथ संयुक्त का उपयोग करता है.

Abstract

Using microfabrication technologies is a prerequisite to create scaffolds of reproducible geometry and constant quality for three-dimensional cell cultivation. These technologies offer a wide spectrum of advantages not only for manufacturing but also for different applications. The size and shape of formed cell clusters can be influenced by the exact and reproducible architecture of the microfabricated scaffold and, therefore, the diffusion path length of nutrients and gases can be controlled.1 This is unquestionably a useful tool to prevent apoptosis and necrosis of cells due to an insufficient nutrient and gas supply or removal of cellular metabolites.

Our polymer chip, called CellChip, has the outer dimensions of 2 x 2 cm with a central microstructured area. This area is subdivided into an array of up to 1156 microcontainers with a typical dimension of 300 m edge length for the cubic design (cp- or cf-chip) or of 300 m diameter and depth for the round design (r-chip).2

So far, hot embossing or micro injection moulding (in combination with subsequent laborious machining of the parts) was used for the fabrication of the microstructured chips. Basically, micro injection moulding is one of the only polymer based replication techniques that, up to now, is capable for mass production of polymer microstructures.3 However, both techniques have certain unwanted limitations due to the processing of a viscous polymer melt with the generation of very thin walls or integrated through holes. In case of the CellChip, thin bottom layers are necessary to perforate the polymer and provide small pores of defined size to supply cells with culture medium e.g. by microfluidic perfusion of the containers.

In order to overcome these limitations and to reduce the manufacturing costs we have developed a new microtechnical approach on the basis of a down-scaled thermoforming process. For the manufacturing of highly porous and thin walled polymer chips, we use a combination of heavy ion irradiation, microthermoforming and track etching. In this so called “SMART” process (Substrate Modification And Replication by Thermoforming) thin polymer films are irradiated with energetic heavy projectiles of several hundred MeV introducing so-called “latent tracks” Subsequently, the film in a rubber elastic state is formed into three dimensional parts without modifying or annealing the tracks. After the forming process, selective chemical etching finally converts the tracks into cylindrical pores of adjustable diameter.

Protocol

प्रक्रिया अनुक्रम # 1: गरम Embossing, मशीनिंग और सॉल्वेंट वाष्प वेल्डिंग अपनी क्यूबिक डिजाइन में CellChip गर्म embossing या सूक्ष्म इंजेक्शन मोल्डिंग द्वारा दोहराया है. इस के लिए, हम चिप की व्युत्क्रम ज्यामित?…

Discussion

हालांकि सूक्ष्म इंजेक्शन मोल्डिंग या गर्म embossing जैसे बहुलक microreplication, की स्थापना की विधियों microstructures के उत्पादन के लिए उपयुक्त हैं, वे वास्तव में एक एकीकृत और अत्यधिक नियंत्रित porosity के साथ microstructures उत्पादन में प्रभावी नह?…

Acknowledgements

लेखकों उनके पर्याप्त मदद के लिए विलायक वाष्प वेल्डिंग के विषय में डिर्क Herrmann, ओलिवर Wendt, Siegfried हॉर्न, हर्टमट Gutzeit, और Joerg Bohn धन्यवाद की कामना करते हैं. इसके अलावा, हम अपने तकनीकी सहायता के लिए माइकल हार्टमैन, एलेक्स Gerwald, और डैनियल Leisen स्वीकार करते हैं करना चाहते हैं.

Referências

  1. Knedlitschek, G., Schneider, F., Gottwald, E., Schaller, T., Eschbach, E., Weibezahn, K. F. A tissue-like culture system using microstructures: influence of extracellular matrix material on cell adhesion and aggregation. J Biomech Eng. 121, 35-39 (1999).
  2. Gottwald, E., Giselbrecht, S., Augspurger, C., Lahni, B., Dambrowsky, N., Truckenmüller, R., Piotter, V., Gietzelt, T., Wendt, O., Pfleging, W., Welle, A., Rolletschek, A., Wobus, A. M., Weibezahn, K. F. A chip-based platform for the in vitro generation of tissues in three-dimensional organization. Lab Chip. 7, 777-785 (2007).
  3. Heckele, M., Schomburg, W. K. Review on micro molding of thermoplastic polymers. Journal of Micromechanics And Microengineering. 14, (2004).
  4. Giselbrecht, S., Gietzelt, T., Guber, A. E., Gottwald, E., Trautmann, C., Truckenmüller, R., Weibezahn, K. -. F. Microthermoforming as a novel technique for manufacturing scaffolds in tissue engineering (CellChips. IEE Proc.-Nanobiotechnol. 151, 151-157 (2004).
  5. Giselbrecht, S., Gietzelt, T., Gottwald, E., Trautmann, C., Truckenmüller, R., Weibezahn, K. -. F., Welle, A. 3D tissue culture substrates produced by microthermoforming of pre-processed polymer films. Biomed Microdevices. 8, 191-199 .
  6. Truckenmüller, R., Rummler, Z., Schaller, T., Schomburg, W. K. Low-cost thermoforming of micro fluidic analysis chips. Journal of Micromechanics and Microengineering. 12, 375-379 (2002).
  7. Truckenmüller, R., Giselbrecht, S. Microthermoforming of flexible, not buried hollow microstructures for chip-based life sciences applications. IEE Proc.-Nanobiotechnol. 151, 163-166 (2004).
  8. Fleischer, R. L., Price, P. B., Walker, R. M. Nuclear tracks in solids. , .
check_url/pt/699?article_type=t

Play Video

Citar este artigo
Giselbrecht, S., Gottwald, E., Truckenmueller, R., Trautmann, C., Welle, A., Guber, A., Saile, V., Gietzelt, T., Weibezahn, K. Microfabrication of Chip-sized Scaffolds for Three-dimensional Cell cultivation. J. Vis. Exp. (15), e699, doi:10.3791/699 (2008).

View Video