This content is Free Access.
Newton’s Laws of Motion
  • 00:00Visão Geral
  • 01:04The Laws of Motion
  • 03:57Set-up
  • 05:40Collision Between Carts of Equal Mass
  • 06:48Collisions Between Carts of Unequal Mass
  • 08:33Applications
  • 09:51Summary

뉴턴의 운동 법칙

English

COMPARTILHAR

Visão Geral

출처: 앤드류 더피, 박사, 물리학과, 보스턴 대학, 보스턴, 석사

이 실험은 상호 작용하는 두 개체와 관련된 다양한 상황에서 검사합니다.

먼저 실험에서는 두 개체가 충돌하는 동안 서로 적용되는 힘을 검사합니다. 오브젝트는 가변 질량이 있는 바퀴달린 카트입니다. 이 실험의 목적은 두 번째 카트가 첫 번째 카트가 첫 번째 에 다시 발휘하는 힘과 동일한 크기와 이 두 힘이 다른 크기를 갖는 경우와 동일한 크기인 경우를 발견하는 것입니다.

둘째, 한 카트가 두 번째 수레를 밀거나 당길 때 두 오브젝트가 서로 가하는 힘을 검사합니다. 다시 말하지만, 두 세력의 진도가 같고 크기가 다른 상황을 탐구하는 데 초점을 맞추고 있습니다.

Princípios

이 실험의 주요 목표는 뉴턴의 세 번째 법칙을 탐구하는 것입니다.

이 장치는 두 개의 카트로 구성되어 있으며, 각각 위에 힘 센서가 장착되어있습니다(그림 1). 힘 센서는 전용 컴퓨터 인터페이스를 통해 컴퓨터에 연결됩니다. 각 힘 센서는 충돌 또는 푸시/풀 상황에서 다른 힘 센서가 가하는 힘을 측정합니다.

Figure 1
그림 1. 기본 설정입니다. 장치의 주요 구성 요소는 두 개의 바퀴달린 카트이며, 각각 위에 힘 센서가 장착되어 있고 컴퓨터 인터페이스가 있습니다.

Procedimento

1. 충돌 상황 고무 범퍼(그림1)를각 힘 센서에 나사로 고정합니다. 50-N 설정에 각 힘 센서를 설정합니다. 데이터 수집을 시작하는 녹색 화살표 옆에 있는 “제로” 버튼을 눌러 각 시험 전에 힘 센서를 0으로 설정합니다. 양수방향(즉, 오른쪽)이 각 힘 센서에 대해 적절하게 정의된지 확인합니다. 카트 오른쪽에 장착된 힘 센서를 밀어 넣습니다. 이것은 긍정적 인 힘 판독을 초래할 것이다. 카트 왼쪽에 장착된 힘 센서를 밀어 넣습니다. 이것은 부정적인 힘 판독귀착될 것입니다. 둘 다 잘못된 경우 카트의 위치를 되돌리기만 하면 됩니다. 하나만 잘못하면 “실험 메뉴”로 이동하여 “설치 센서”를 선택합니다. 적절한 힘 센서를 선택하고 “역방향”을 선택합니다. 첫 번째 충돌은 동일한 질량의 카트를 포함한다. 충돌 전에 하나의 수레를 고정하도록 지정합니다. 다른 카트에는 고정 된 카트쪽으로 초기 속도가 주어지므로 카트가 충돌합니다. 한 장바구니를 다른 카트쪽으로 밀어붙이기 전에 “수집” 버튼(녹색 화살표)을 누르세요. 한 장바구니에 작은 삽을 주고, 수레를 풀어주고, 충돌을 관찰한다. 약 8~20N 사이의 피크 포스 값은 일반적인 시험에서 관찰되어야 합니다. 최대 힘 값이 이 범위보다 훨씬 작거나 훨씬 크면 푸시를 조정합니다. 충돌 후, 컴퓨터는 각 힘 센서에 의해 기록된 대로 “힘 대 시간”의 그래프를 표시합니다. 그래프가 나타나지 않으면 트리거를 반전합니다. “수집” 버튼을 누친 후 힘 센서 중 하나가 특정 트리거 수준 위(또는 아래) 값을 기록할 때까지 실제로 데이터가 기록되지 않습니다. 그러나 트리거 레벨이 양수 값으로 설정되고 힘 센서가 음수 힘 값만 제공하거나 그 반대의 경우도 마찬가지인 경우 컴퓨터는 데이터를 기록하라는 신호를 받지 못합니다. 트리거 설정을 확인하거나 되돌리려면 “데이터 수집” 아이콘(“Zero” 버튼의 왼쪽)을 누르고 “트리거링” 탭을 선택합니다. 이 실험에 사용된 두 가지 옵션은 “0.2 N을 가로질러 증가”와 “-0.2 N을 가로질러 감소”입니다. 이러한 설정 중 하나가 필요한 트리거링을 일으키지 않으면 다른 설정으로 전환합니다. 두 번째 충돌에서 고정 카트는 충돌 전에 움직이는 카트질량의 2-3배를 가져야 합니다. 이를 위해 고정 된 카트에 하나 이상의 가중치를 추가합니다. 프로세스를 반복합니다(아래 단계 참조). 충돌 전에 고질량 카트를 고정하도록 지정합니다. “수집” 버튼을 누르고 저질량 카트를 높은 질량 카트쪽으로 누립니다. 컴퓨터에 두 개의 “힘 대 시간” 그래프가 표시됩니다. 세 번째 충돌에서 충돌 전에 이동하는 카트는 고정 카트의 질량의 2-3배를 가져야 합니다. 한 카트에서 다른 카트로 여분의 무게(들)를 전송하여 이를 달성하십시오. 충돌을 수행하고 데이터를 수집하는 과정을 반복합니다. 2. 상황을 밀고 당기는 상황 각 힘 센서의 고무 범퍼를 후크로 교체합니다. 카트를 함께 연결하여 한 장바구니를 다른 카트를 밀거나 당길 수 있습니다. 1.8 단계에서 설명된 대로 트리거링 상태를 반전합니다. 동일한 질량의 카트로 시작합니다. “수집” 버튼을 누르세요. 카트 중 하나를 당기거나 밀어 다른 수레를 당기거나 밀어 넣거나 앞뒤로 흔들어 당기고 밀어 넣습니다. 다른 카트의 질량의 2-3배를 당기거나 밀어붙이는 수레를 준다. 데이터 수집 프로세스를 반복합니다. 이 푸시/당기기 시나리오에 대해 “힘 대 시간” 데이터를 기록합니다. 다른 카트의 질량의 2-3배를 당기거나 밀어내는 카트를 제공합니다. 데이터 수집 프로세스를 반복합니다. 이 푸시/당기기 시나리오에서 “힘 대 시간” 데이터를 기록합니다.

Resultados

Newton's third law states that whenever two objects interact, the second object exerts a force on the first object that is equal in magnitude and opposite in direction to the force the first object exerts on the second. This is simple to state, but it can be hard to accept. For example, it is often assumed that the force a larger object exerts on a smaller object is larger than the force the smaller object exerts back on the larger object.

Figure 2
Figure 2. Result of the first collision. The forces experienced by the carts are equal and opposite.

Figure 3
Figure 3. Result of the second collision. The forces experienced by the carts are equal and opposite.

Figure 4
Figure 4. Result of the third collision. The forces experienced by the carts are equal and opposite.

Figure 5
Figure 5. Result of the first pushing/pulling situation. The forces experienced by the carts are equal and opposite.

Figure 6
Figure 6. Result of the second pushing/pulling situation. The forces experienced by the carts are equal and opposite.

Figure 7
Figure 7. Result of the third pushing /pulling situation. The forces experienced by the carts are equal and opposite.

Applications and Summary

The concept addressed in this experiment, namely that, in all interactions, the force one object applies to another is equal in magnitude and opposite in direction to the force applied by the second object back on the first, has many applications. For example, (1) the gravitational force the Sun applies to the Earth is equal and opposite to the gravitational force the Earth applies to the Sun. (2) The gravitational force the Earth applies to the Moon is equal and opposite to the gravitational force the Moon applies to the Earth. (3) The gravitational force the Earth exerts on an apple is equal and opposite to the gravitational force the apple applies to the Earth. (4) In a collision, such as that between a car and a truck on the street or that between two football players, the forces are always equal and opposite, no matter how the masses compare. (5) When a person stands on a floor or sits on a chair, the force exerted on that person by the floor or the chair is equal and opposite to the force the person exerts on the floor or chair.

Transcrição

Newton’s laws of motion are the basis for classical mechanics and describe the relationship between an object and the forces acting upon it.

For example, when a rocket is at rest on the launchpad before launch, the rocket and the ground exert equal-and-opposite forces on one another. To take off, or when the rocket is in space, the expanding gas from the burning fuel pushes against the rocket and propels it forward. Less apparent, however, is that the rocket pushes against the gas at the same time. These simple phenomena obey Newton’s laws of motion, though the forces at work may not be obvious because forces are not always visible.

This video will introduce the basics of Newton’s laws of motion, and then demonstrate the concept through a series of experiments measuring the forces between two wheeled carts in various situations.

Newton’s laws of motion consist of three key laws. The first law is the most simple, and states that an object at rest stays at rest, unless acted upon by a force. Similarly, an object in motion stays in motion unless acted upon by a force. Specifically, if the net forces on the object are zero, the velocity of the object is constant, whether the velocity is zero or not. However, an applied force, such as kicking the ball or hitting the wall, causes the velocity of the object to change.

Newton’s second law states that the rate of change of an objects velocity, called acceleration, is directly proportional to the force applied to it. The proportionality factor is the mass of the object itself.

In other words, if an object is accelerating, there is a net force on it. This law is consistent with the first law, where the rate of change of an object’s velocity-its acceleration- is zero when there is no net force applied.

Finally, Newton’s third law states that the forces of two objects acting upon each other are equal in magnitude but opposite in direction

This behavior is often hard to understand. For example, when two objects of different masses collide, it is often assumed that the more massive object exerts a larger force than the less massive object. However, the forces are equal and opposite.

Newton’s third law is commonly expressed with the phrase, “for every action there is an equal and opposite reaction.” To be specific, the forces between two interacting objects are called “action-reaction pairs,” which are equal in magnitude and opposite in direction.

But the responses of the objects-that is, their accelerations-may not be equal. This is because acceleration is inversely proportional to mass according to Newton’s second law.

Consider what happens when a very large truck collides with a very small car. If action and reaction refer to the impact forces between them, then indeed the action does produce an equal and opposite reaction. But because of the significant differences in masses between truck and car, the effects of these forces are very different. The car rebounds catastrophically while the much more massive truck hardly changes course.

Now that the principles of Newton’s laws of motion have been presented, let’s take a look at the behavior of moving objects, and relate their behavior to Newton’s third law of motion.

The following experiments use two wheeled carts, which slide on a long, low friction track.

Each cart is equipped with a force sensor connected to a computer interface for recording data. Each sensor is positioned to strike the sensor of the other cart during a collision, or to push or pull on the sensor of the other cart as they slide on the track.

Before starting the collision experiments, the force sensors must be set up for impact and configured for the expected level of force. First, screw a rubber bumper onto the plunger of each force sensor. Locate the slide switch on top of the force sensor. Set this switch to the 50 Newton position for each sensor.

The “Collect” button, which looks like a green arrow, starts data collection. Before each experiment, press the button next to this green arrow to zero the force sensor.

Zero both force sensors then check them to make sure the positive direction for each is defined to the right. Push in the sensor with the plunger that points right. The force reading should be positive.

Push in the sensor with the plunger that points left. The force reading should be negative. If both force readings are wrong, then reverse the positions of the carts.

If only one reading is wrong, then go to the “Experiment” menu, and select “Setup Sensors.” Choose the appropriate force sensor and select “Reverse Direction.”

After the force sensors have been configured correctly, the apparatus is ready for the first experiment, which uses carts of equal mass. Choose one cart to be stationary at the start of the test.

Zero both force sensors then press the “Collect” button to start data recording. Push and release the other cart so it slides on its own and collides with the stationary cart.

After impact, the computer displays a plot of the “force vs. time” recorded by each sensor. Magnitudes of peak force should be between 8 and 20 Newtons. If the peak force is outside this range, then repeat the experiment and adjust how hard the cart is pushed.

When carts with equal mass collide, this plot shows that the forces they experience are equal and opposite. Because acceleration equals force divided by mass, each cart accelerates with the same magnitude, but in opposite directions.

The second collision experiment repeats the first experiment but with carts of unequal mass. Choose one cart to be stationary and load it with one or more weights so it has 2 to 3 times the mass of the moving cart.

Zero both force sensors, press the “Collect” button and repeat the collision experiment by pushing the cart without weights into the weighted cart

When the less massive moving cart collides with the more massive, stationary one, they rebound with very different speeds. Despite appearances, the magnitudes of the forces are actually equal, as the plots clearly show. This behavior may be confusing but it is because the less massive cart experiences greater acceleration than the more massive one, again because acceleration equals force divided by mass.

Next, transfer the weights from the stationary cart to the moving cart to reverse the roles of the carts. Repeat the experiment with the moving cart being more massive and the stationary cart being less massive. Zero both force sensors, and press the “Collect” button. Repeat the experiment by pushing the weighted cart into the un-weighted one.

As with the previous experiment, the two carts rebound with very different speeds, because of their different masses. However, the impact forces still have equal magnitudes. So, regardless of whether the carts have equal or different masses, the collision forces are always equal in magnitude and opposite in direction.

Newton’s third law of motion applies not only to collisions, but also to all situations where two objects interact.

Newton’s third law also applies to the pushing and pulling interactions between two objects. To examine this phenomenon, the cart experiment was modified by replacing the rubber bumpers on the force sensors with hooks, and then hooking the carts together. The triggering condition was also reversed in the data collection software.

When carts of equal mass pushed and pulled the other, the forces were equal and opposite, despite the changing direction of motion. When two carts of unequal mass were pushed and pulled the phenomenon still holds true.

Physicists trying to understand planet formation often study collisions. In this example, dust particles were prepared to simulate collisions in the early solar system. The particles were dropped, and their collision recorded.

The colliding particles exerted forces against each other, which were equal in magnitude and opposite in direction. When both objects remained intact, the impact forces caused them to rebound.

You’ve just watched JoVE’s introduction to Newton’s laws of motion. You should now understand the basics of the three laws, how they describe motion and forces on objects. Thanks for watching!

Tags

Cite This
JoVE Science Education Database. JoVE Science Education. Newton’s Laws of Motion. JoVE, Cambridge, MA, (2023).