É necessária uma assinatura da JoVE para visualizar este conteúdo.  Faça login ou comece sua avaliação gratuita.
Chemical Storage: Categories, Hazards And Compatibilities
  • 00:00Visão Geral
  • 00:48Basics of Chemical Identification and Storage
  • 04:08Labeling Hazardous Materials
  • 05:44Segregating and Storing Chemicals
  • 08:14Summary

Stockage de produits chimiques : catégories, dangers et compatibilités

English

COMPARTILHAR

Visão Geral

source : Robert M. Rioux & Taslima A. Zaman, Pennsylvania State University, University Park, PA

tandis que l’utilisation de divers produits chimiques dans la recherche expérimentale est essentielle, il est également important de stocker et de les entretenir dans le cadre du programme environnement, santé et sécurité (EHS) en toute sécurité. Les propriétés des produits chimiques et leur réactivité varient largement, et si les produits chimiques ne sont pas gérés, stockées et étiquetés correctement, ils peuvent avoir des conséquences nuisibles ou destructeurs même tels que la production de fumées toxiques, d’incendie ou d’explosion qui peut aboutir à la fatalité humaine , dommages matériels ou dangers pour l’environnement. Donc, une étiquette chimique appropriée devrait identifier le matériel et les dangers de la liste, et les utilisateurs doivent avoir des connaissances sur la façon de lire les étiquettes de produits chimiques et des fiches de données sécurité (FDS). Bon stockage des produits chimiques doit répondre aux normes de l’OSHA (Occupational Safety and Health Association) et cela peut empêcher la plupart des produits chimiques dangers réactivité.

Princípios

Procedimento

1. étiquetage des matières dangereuses Collect information sur les dangers des articles pertinents de la fiche de données de sécurité (SDS) pour la substance chimique. Certains FDS peuvent même fournir le symbole diamant de NFPA 704 avec les numéros de classement danger déjà renseignés. Si le SDS ne fournit pas une étiquette de diamant NFPA pour la substance chimique, les renseignements peuvent être obtenus dans les sections suivantes de la FDS : • informations sur les risque…

Resultados

RGN Reactivity Group Incompatible With RGN:
1 Acids, Mineral, Non-Oxidizing 4-15,17-26,28,30-34,101-107
2 Acids, Mineral, Oxidizing 3-34,101-103,105-107
3 Acids, Organic 2,4,5,7,8,10-12,15,18,21,22,24,265,33,34, 102-105,107
4 Alcohols and Glycols 1-3,8,18,21,25,30,34,104,105,107
5 Aldehydes 1-3,7,8,10,12,21,25,27,28,30,33,34,104,105, 107
6 Amides 1,2,21,24,104,105,107
7 Amines, Aliphatic and Aromatic 1-3,5,12,17,18,21,24,30,34,104,105, 107
8 Azo Compounds, Diazo Compounds and Hydrazines 1-5,9,11-13,17-23,25,30-34, 102-107
9 Carbamates 1,2,8,10,21,22,25,30,104, 107
10 Caustics 1-3,5,9,13,17-19,21,22,24-27,32,34,102,103, 107
11 Cyanides 1-3,5,9,13,17-19,21,22,24-27,32,34,102,103, 107
12 Dithiocarbamates 1-3,8,17-19,21,25,30,34,103,104, 107
13 Esters 1,2,8,10,21,25,102,104,105, 107
14 Ethers 1,2,104, 107
15 Fluorides, Inorganic 1-3, 107
16 Hydrocarbons, Aromatic 2,104, 107
17 Halogenated Organics 1,2,7,8,10,11,20-23,25,30,104,105, 107
18 Isocyanates 1-4,7,8,10-12,20-22,25,30,31,33, 104-107
19 Ketones 1,2,8,10,11,20,21,25,30,104,105, 107
20 Mercaptons and Other Organic Sulfides 1,2,8,17-19,21,22,25,30,34,104,105, 107
21 Metals, Alkali and Alkaline Earth Elemental 1-13,17-20,25-27,30-32,34,101-104,106, 107
22 Metals, Other Elemental and Alloys as Powders, Vapors or Sponges 1-3,8-10,17,18,20,28,30,34,102-104,106, 107
23 Metals, Other Elemental and Alloys as Sheets, Rods, Drops, Moldings 1,2,8,17,102-104, 107
24 Metal and Metal Compounds, Toxic 1-3,6,7,10,26,30,34,102,103,106, 107
25 Nitrides 1-5,8-13,17-21,26-27,30,31,34,101-104,106, 107
26 Nitrites 1-3,10,21,24,25,30,104,105, 107
27 Nitro Compounds, Organic 2,5,10,21,25,104,105, 107
28 Hydrocarcons, Aliphatic, Unsaturated 1,2,5,22,30,104, 107
29 Hydrocarbons, Aliphatic, Saturated 2,104, 107
30 Peroxides and Hydroperoxides, Organic 1,2,4,5,7-9,11,12,17-22,24-26,28,31-34,101-105, 107
31 Phenols and Cresols 1,2,8,18,21,25,30,34,102-105, 107
32 Organophosphates, Phosphothioates, Phosphodithioates 1,2,8,10,21,30,34,104,105, 107
33 Sulfides, Inorganic 1-3,5,8,18,30,34,102-104,106, 107
34 Epoxides 1-5,7,8,10-12,20-22,24,25,30-33,102,104,105, 107
101 Combustible and Flammable Materials, Misc. 1,2,21,25,30,102,104,105, 107
102 Explosives 1-3,8,10,13,21-25,30,31,33,34,101,105-105, 107
103 Polymerizable Compounds 1-3,8,10-12,21-25,30,31,33,102,104,105, 107
104 Oxidizing Agents, Strong 1,3-9,11-14,16-23,25-34,101-103,105, 107
105 Reducing Agents, Strong 1-8,12,13,17-20,26,27,30,31,32,34,101-104,106, 107
106 Water and Mixtures Containing Water 1,2,8,18,21,22,24,25,33,105, 107
107 Water Reactive Substances ALL!

Table 1. Chemical compatibility chart. Obtained from Penn State Environmental Health and Safety website at http://legacy.ehs.psu.edu/hazmat/chemical_compatibility.cfm

Applications and Summary

Research laboratories often contain many chemicals that may pose distinct hazards to our health and well-being. Proper storage, maintenance, and labeling of these chemicals can help prevent accidents and provide a safe working environment. While the list of chemicals may vary by laboratory and experiments, this document provides a basic guideline to storing and maintaining chemicals, and using the SDS to properly handle chemicals. Specific hazard assessment may reveal more specialized and additional storage requirements.

Referências

  1. Quick Card National Fire Protection Association at http://www.nfpa.org/Assets/files/AboutTheCodes/704/NFPA704_HC2012_QCard.pdf
  2. Occupational Health and Safety (OSHA) Brief on Hazard Communication Standard: Labels and Pictograms, 29 CFR 1910.1200 (HCS) at https://www.osha.gov/Publications/OSHA3636.pdf
  3. Occupational Health and Safety (OSHA) Regulations (Standards – 29 CFR) 1926.152 – Flammable liquids at https://www.osha.gov/pls/oshaweb/owadisp.show_document?p_table=STANDARDS&p_id=10673#1926.152(a)
  4. NFPA 30: Flammable and Combustible Liquids Code at http://www.nfpa.org/codes-and-standards/all-codes-and-standards/list-of-codes-and-standards?mode=code&code=30
  5. Occupational Health and Safety (OSHA) National Research Council Recommendations Concerning Chemical Hygiene in Laboratories Standard-1910.1450 App A at https://www.osha.gov/pls/oshaweb/owadisp.show_document?p_table=STANDARDS&p_id=10107
  6. OSHA, Hazard Communication Standard, 29 CFR 1910.1200, 2012
  7. Globally Harmonized System of Classification and Labelling of Chemicals (Second revised ed.), New York and Geneva: United Nations, 2007, ISBN 978-92-1-116957-7, ST/SG/AC.10/30/Rev.2 ("GHS Rev.2")

Transcrição

Safe laboratories require proper handling of hazardous chemicals, including appropriate labeling and storage.

Many types of chemicals are important for scientific research, thus it is crucial to know their properties and potential dangers. Chemicals may interact dangerously, and must be properly segregated and stored. Fire and safety organizations have strict standards for labeling, segregation, and storage, which can prevent hazards in the lab.

This video will illustrate how to evaluate, label, and store laboratory chemicals.

For identification and safety purposes, all chemicals must have labels with certain information. First, a product identifier shows the name and any alternatives of the chemical. A signal word indicates the level of hazard if one exists, and will either be ‘warning,’ for less severe hazards, or ‘danger,’ for more severe ones.

Further, the hazard statement describes the hazard, while the precautionary statements describe how to prevent risk, respond to exposure, and store and dispose the material. Hazard pictograms depict a specific type of hazard, like corrosion or aquatic toxicity. Lastly, contact information of the provider is shown.

Chemicals can additionally be labeled with the NFPA 704 diamond symbol. The blue quadrant contains the degree of health hazard, red the flammability hazard, yellow the reactivity hazard, and the white quadrant special hazards. Hazards are rated from 0, no hazard, to 4, severe risk. The special diamond may contain additional symbols indicating the type of hazard.

For detailed information about a chemical, read its associated 16-section Safety Data Sheet, or SDS. General information on a substance is found in section 1 through 3; its name and alternatives, hazard, and composition. Sections 4 through 6 provide emergency procedures in case of exposure, fire, or accidental release. Section 7 has information on handling and storage, and section 8 outlines protective equipment needed.

Sections 9 through 11 contain other important information about the substance-its physical and chemical properties, its stability and reactivity, and its toxicity. Sections 12 through 15 containing details about ecological impact, disposal considerations, transport requirements, and regulatory information, are not required to be in the SDS. Lastly, section 16 includes any other pertinent information about the substance.

After assessing their hazards, you should store chemicals with similar hazards together. Common hazard groups include acids, bases, flammables, oxidizers, toxics, peroxide-forming substances, pyrophoric-forming substances, water-reactive chemicals, and explosives. Each of these groups has specific storage requirements, which can prevent dangerous situations.

Additionally, some groups when mixed together form toxic fumes, or explosives. Therefore, they should be stored separately from each other, to prevent accidental spills from having disastrous consequences.

Now, we will show you how to evaluate hazards with a Safety Data Sheet, the use of NFPA 704 standard to label hazardous materials, and how to store specific types of chemicals in the laboratory.

First, assess a chemical’s potential hazards. Obtain the SDS when receiving or starting to work with a new chemical. If it is not packaged with the chemical or already available in the laboratory, it may be found on the provider’s website. Then, read this document carefully. Hazard information can be found in section 2, including a 704 diamond in some cases.

Additionally, section 9 may contain information on flammability hazards, section 10 on instability hazards, and section 11 on health hazards. Information on special hazards may be found in these sections or elsewhere in the document. Note that any special handling and storage instructions are found in section 7.

With the relevant hazard information from the SDS, fill in the NFPA diamond. If there are specific numbers from the SDS, use those, otherwise use the NFPA 704 guidelines to find what number to assign to each hazardous risk.

In this document, Table 5.2 has the criteria for health hazards, 6.2 for flammability hazards, 7.2 for instability hazards, and 8.2 for special hazards. With these numbers,fill in each hazard quadrant in the diamond and place on the chemical container.

Now that you have assessed and labeled the potential hazards of a material, you will need to store it properly. Always store chemicals according to instructions in the SDS, and separate out materials with incompatible chemical and physical characteristics. Make sure all caps are closed and properly fitted. Also, keep food and drink away from all storage areas.

For liquid storage use a chemically resistant secondary container in case there is a leak or spill. To avoid leaks dripping onto personnel, store these containers below shoulder height.

Specific chemical groups have different storage requirements. Store acids and bases separately, either in acid and base cabinets, or on protected non-metal shelves. Toxic chemicals should be stored in a cool, dry, and ventilated area. Date peroxide-forming chemicals on arrival and place in a dark, cool, and dry area. Dispose of them before the expected date of initial peroxide formation.

Pyrophoric-forming substances can ignite on contact with air and water, so purge them vigorously with inert gas. For more details on this procedure, watch our video on degassing liquids. Keep these chemicals away from flammables, oxidizers, and water, and store under inert atmosphere such as a glove box or glove bag.

Flammable and combustible chemicals require special care. Store these in approved storage cabinets, which are properly vented into a dedicated system. If they need to be refrigerated, use a laboratory-grade flammable-safe refrigerator. Keep this type of chemicals away from acids and bases, ignition sources, oxidizers, and corrosives.

Lastly, store explosives away from all other chemicals in a secure location, away from shock or friction. Take special care when handling explosive materials.

There are other groups of chemicals with additional storage considerations. Be sure to always check the SDS for any detailed storage instructions, and make sure the lab can handle storage of such materials.

You’ve just watched JoVE’s introduction to chemical labeling and storage. You should now understand the proper methods to indicate potential hazards, store chemicals, and prevent dangerous interactions. Thanks for watching!

Tags

Cite This
JoVE Science Education Database. JoVE Science Education. Chemical Storage: Categories, Hazards And Compatibilities. JoVE, Cambridge, MA, (2023).