É necessária uma assinatura da JoVE para visualizar este conteúdo.  Faça login ou comece sua avaliação gratuita.
Proper Waste Disposal
  • 00:04Visão Geral
  • 01:07Principles of Proper Waste Disposal
  • 02:00Procedure for Waste Handling
  • 04:08Summary

Descarte adequado de resíduos

English

COMPARTILHAR

Visão Geral

Robert M. Rioux e Taslima A. Zaman, Universidade Estadual da Pensilvânia, Pensilvânia, PA

Os usuários são responsáveis pelo descarte adequado dos resíduos gerados durante seu trabalho. O descarte inadequado de resíduos pode colocar em risco severamente a saúde pública e/ou o meio ambiente. O manuseio de resíduos perigosos deve ser regulado a partir do momento da geração até sua disposição em sua instalação de destino final offsite. Um sistema de gestão de resíduos deve ser elaborado antes do início dos trabalhos em qualquer atividade laboratorial. Os usuários devem cumprir as regras e regulamentos do escritório de Saúde e Segurança Ambiental (EHS) de seu instituto, que desenvolve e implementa sistemas adequados de gestão de resíduos que satisfaçam diversas normas e normas, como as impostas pela Administração de Segurança e Saúde Ocupacional (OSHA).

Princípios

Procedimento

1. Gestão de Resíduos Os usuários devem fazer um esforço para manter o desperdício ao mínimo. A melhor maneira de fazê-lo é reduzindo a escala de operação, o que minimiza a quantidade de resíduos gerados. Sempre que possível, os produtos químicos utilizados devem ser substituídos por produtos químicos menos perigosos. As quantidades químicas devem ser mantidas ao mínimo. Armazene apenas o que será usado no curto prazo. Além de prevenir ou minimizar a geração de resíduos…

Applications and Summary

In this document, a basic guideline for laboratory waste disposal is provided. Users must work and comply with their institute's EHS office to determine the proper method for waste disposal satisfying diverse regulations and standards. The laboratory user should be cognizant of what waste material is being generated and hazards present should be carefully assessed to determine proper waste disposal, which may otherwise put public health or the environment in danger. No matter how small or large a waste quantity is handled, proper PPE must be worn.

Contaminant Maximum Contaminant Level, mg/L
1,1-Dichloroethylene 0.007
1,1,1-Trichloroethane 0.2
1,1,2-Trichloroethane 0.005
1,2-Dibromo-3-chloropropane (DBCP) 0.0002
1,2-Dichloroethane 0.005
1,2-Dichloropropane 0.005
1,2,4-Trichlorobenzene 0.07
2,4-D 0.07
2,4,5-TP (Silvex) 0.05
Alachlor 0.002
Antimony 0.006
Arsenic 0.010 as of 01/23/06
Asbestos (fiber > 10 micrometers) 7
Atrazine 0.003
Barium 2
Benzene 0.005
Benzo(a)pyrene (PAHs) 0.0002
Beryllium 0.004
Bromate 0.01
Cadmium 0.005
Carbofuran 0.04
Carbon tetrachloride 0.005
Chloramines (as Cl2) 4
Chlordane 0.002
Chlorine (as Cl2) 4
Chlorine dioxide (as ClO2) 0.8
Chlorite 1
Chlorobenzene 0.1
Chromium (total) 0.1
cis-1,2-Dichloroethylene 0.07
Cyanide (as free cyanide) 0.2
Dalapon 0.2
Di(2-ethylhexyl) adipate 0.4
Di(2-ethylhexyl) phthalate 0.006
Dichloromethane 0.005
Dinoseb 0.007
Dioxin (2,3,7,8-TCDD) 0.00000003
Diquat 0.02
Endothall 0.1
Endrin 0.002
Ethylbenzene 0.7
Ethylene dibromide 0.00005
Fluoride 4
Glyphosate 0.7
Haloacetic acids (HAA5) 0.06
Heptachlor 0.0004
Heptachlor epoxide 0.0002
Hexachlorobenzene 0.001
Hexachlorocyclopentadiene 0.05
Lindane 0.0002
Mercury (inorganic) 0.002
Methoxychlor 0.04
Nitrate (measured as Nitrogen) 10
Nitrite (measured as Nitrogen) 1
o-Dichlorobenzene 0.6
Oxamyl (Vydate) 0.2
p-Dichlorobenzene 0.075
Pentachlorophenol 0.001
Picloram 0.5
Polychlorinated biphenyls (PCBs) 0.0005
Selenium 0.05
Simazine 0.004
Styrene 0.1
Tetrachloroethylene 0.005
Thallium 0.002
Toluene 1
Total Trihalomethanes (TTHMs) 0.08
Toxaphene 0.003
trans-1,2-Dichloroethylene 0.1
Trichloroethylene 0.005
Vinyl chloride 0.002
Xylenes (total) 10

Table 1. Table of Regulated Drinking Water Contaminants. Obtained from US Environmental Protection Agency website at https://www.epa.gov/ground-water-and-drinking-water/table-regulated-drinking-water-contaminants

Referências

  1. Occupational Health and Safety [OSHA] (Standard – 1910.1450 App A). at https://www.osha.gov/pls/oshaweb/owadisp.show_document?p_table=STANDARDS&p_id=10107
  2. Princeton University Environmental Health Safety Empty Chemical Container Management at https://ehs.princeton.edu/environmental-programs/waste-management/empty-chemical-container-management
  3. US Environmental Protection Agency Table of Regulated Drinking Water Contaminants at https://www.epa.gov/ground-water-and-drinking-water/table-regulated-drinking-water-contaminants

Transcrição

Hazardous waste, whether chemical, medical or radioactive, is generated in many laboratories and requires regulated disposal to ensure safety of public health and the environment.

The regulation of hazardous waste handling must be enforced from the moment of generation until its disposal at an offsite final destination facility.

Prior to commencing any laboratory activity, a waste management system must be devised. This is often established by an institute’s Environmental Health and Safety, or EH&S, office, which enforces guidelines imposed by the Occupational Safety and Health Administration, or OSHA.

This video will illustrate the principles and typical laboratory procedures of proper waste disposal.

Efficient waste management is an important aspect of proper waste disposal. This can be accomplished by using the minimal amount of chemicals possible, by reusing surplus materials, and by recycling waste.

The generated waste must be labeled, segregated according to chemical compatibility, and stored in a fume hood or other well ventilated area. Other laboratory waste, such as sharps and glass, must be disposed with care in appropriate containers.

Now that we have discussed the principles of proper waste disposal, let’s look at an actual procedure.

If applicable, keep chemical waste to a minimum by reducing the scale of operation. Furthermore, substitute chemicals with less hazardous reagents whenever possible.

In addition to minimizing the scale of operation, store only chemical quantities that will be used in the near term. You can also reduce chemical waste by recycling solvents like acetone, using a distillation.

Wear proper personal protective equipment including a lab coat, goggles, and gloves, as well as long pants and closed-toed shoes, whenever handling any chemical waste.

Collect chemical waste in suitable containers such as plastic carboys or glass bottles, and store near the point of generation in a designated satellite accumulation area.

Affix labels to the waste containers as soon as chemicals are added. Write on the labels the full names of the chemicals and their approximate compositions.

Additionally, use separate containers for halogenated, nonhalogenated, and aqueous waste to avoid potential heat or gas formation. When the containers are filled to capacity, carefully move them to a designated central accumulation area, from which they will be removed for disposal.

Dispose of chemically contaminated needles, syringes and razor blades, collectively known as sharps, inside of a sharps waste container.

For broken glass, used pipettes or test tubes, use a specialized glass waste container. If desired, empty bottles can be reused after triple rising with acetone, water, and again acetone.

You’ve just watched JoVE’s introduction to proper waste disposal. You should now understand waste management, how to collect chemical and sharps waste, and how to store it for disposal. Thanks for watching!

Tags

Cite This
JoVE Science Education Database. JoVE Science Education. Proper Waste Disposal. JoVE, Cambridge, MA, (2023).