JoVE Science Education
Microbiology
É necessária uma assinatura da JoVE para visualizar este conteúdo.  Faça login ou comece sua avaliação gratuita.
JoVE Science Education Microbiology
Antibiotic Susceptibility Testing: Epsilometer Tests to Determine MIC Values of Two Antibiotics and Evaluate Antibiotic Synergy
  • 00:01Concepts
  • 04:08Preparation of Plates and Bacteria
  • 06:04Determining MIC Using E-Test
  • 07:01Synergy Testing: Cross Approach
  • 07:47Synergy Testing: Non-Cross Approach
  • 08:56MIC Determination Using Broth Dilution
  • 10:33Data Analysis: Broth Microdilution
  • 11:10Data Analysis and Results: Synergy Testing

抗生物質感受性試験:2つの抗生物質のMIC値を決定し、抗生物質の相乗効果を評価するエプシロメーター試験

English

COMPARTILHAR

Visão Geral

ソース: アンナ・ブレックバーグ1, ロルフ・ルード1
1臨床科学ルンド, 感染医学の部門, ルンド大学生物医学センター, 221 00 ルンドスウェーデン

微生物が抗生物質耐性をどのように進化させるかを理解する上で、抗生物質と細菌の相互作用に関する知識が重要である。1928年、アレクサンダー・フレミングは、細胞壁再生を妨げ、抗菌機能を発揮する抗生物質であるペニシリンを発見しました(1)。その後、細菌のDNA複製やタンパク質翻訳を阻害する薬剤を含む、多様な作用機序を持つ他の抗生物質が発見された。しかし、近年、新しい抗生物質は開発されていない。現在の抗生物質に対する耐性が高まり、効果的に治療できない重篤な感染症が生じています(2)。ここでは、細菌集団における抗生物質耐性を評価するいくつかの方法について説明する。これらの方法のそれぞれは、使用される抗生物質の作用機序にかかわらず、細菌死が測定された結果であるため、機能する。抗生物質耐性は、病院の設定を通じて特に急速に広がるだけでなく、社会全体に広がっています。このような抵抗手段を調べるために、エプシロメータ試験(E検定)やブロス希釈試験(3)を含む様々な方法が開発されている。

E検定は確立された方法であり、微生物の目に見える成長を阻害する抗菌剤の最低濃度である最小限の阻害濃度(MIC)データを定量する費用対効果の高いツールです。使用される細菌株および抗生物質によって、MIC値はサブμg/mLから>1000 μg/mL(4)の間で変化する可能性がある。E検定は、あらかじめ定義された抗生物質勾配を含むプラスチックストリップを使用して行われ、これはμg/mLでMIC読み取りスケールが刻印されています。このストリップは、接種された寒天プレートに適用される場合、寒天マトリックス上で直接転送されます。インキュベーション後、細菌の増殖が防止されるにつれて、対称的な楕円阻害ゾーンがストリップに沿って見える。MIC は、楕円がストリップと交差する終点である阻害の領域によって定義されます。MICを決定するもう一つの一般的な方法は、マイクロブロス希釈法である。マイクロブロス希釈は、接種細菌を含むブロス培地に添加された抗菌剤の異なる濃度を組み込む。インキュベーション後、MICは目に見える成長を防ぐ抗生物質の最も低濃度として定義される(5)。また、定量的な方法であり、いくつかの細菌に適用することができます。この方法の欠点は、試薬の濃度と実験に必要な試薬の数が多い場合にエラーが発生する可能性があることです。抗生物質耐性の測定は、臨床および研究の両方の観点から不可欠であり、耐性を調査するこれらのインビトロ法について以下に説明します。

特定の細菌に対する抵抗性のプロファイルは、患者が併用治療と単一療法のどちらから利益を得るかを決定するために抗生物質治療を最適化するために適用することができる。一度に複数の抗生物質を使用するためには、互いの相互作用を知ることが不可欠であり、それらが添加剤、相乗的、または拮抗効果を有するかどうかを知ることが不可欠です。抗生物質の関節効果が等しい用量で与えられた個々の抗生物質の効力に等しい場合、添加効果が見られます。一方、抗生物質間の相乗効果は、薬剤が単独で与えられる場合よりも抗生物質の関節効果がより強力である場合に存在する(6)。抗菌治療の組み合わせを適用することは、このように個々の抗生物質治療の効果を高めるために抗菌性の発生を回避するために使用される(7)。抗菌性の知識は、抗菌の組み合わせの不必要な使用を防ぐためにも重要です。E検定方法論は、異なる抗菌剤間の可能な相乗効果と拮抗作用を決定するための簡単かついくつかの方法を提供する。抗生物質耐性病原体の増殖に直面するためには、特定の抗生物質の相乗的および拮抗的なメカニズムの可能性に関する知識が重要であり、臨床的有効性および多剤耐性との闘いをもたらす。

E検定を用いたシナジーの決定は、クロステストと非クロステストの2つの大きなアプローチに分けられます。いずれの相乗効果テストも、個々のMIC値に関する以前の知識に依存していますが、この2つのアプローチは方法論と概念的アプローチにおいて若干異なります。非クロスシナジー試験では、試験対象のペアの最初の抗生物質が細菌に接種された寒天板上に置かれる。最初のストリップからの抗生物質がプレートを注入することを許可した後(例えば、1時間後)、ストリップが除去され、2番目の抗生物質を含む新しいストリップが最初のとまったく同じ場所に置かれ、各otの上に2つの個々のMIC値を置くことを確認します。彼女。得られた阻害ゾーンは、上記のように分析することができ、式1に基づいて計算された相乗効果。

式 1 – 分数阻害濃度 (FIC)

値 >0.5 は相乗効果を示します。

分析しやすいプレートで試験官に報酬を与える一方で、ストリップの変更や実験ごとに2枚のプレートを使用する必要性により、多少手間と時間がかかります。代わりに、クロステストが使用されることがよくあります。2つの異なるE検定ストリップを互いに上に追加する代わりに(最初の除去後)、両方が同時に配置されますが、クロス(90°角度)の形で、以前に決定された2つのMIC値が90°角度を形成します。このアプローチでは、シナジーテストごとに1つのプレートのみが必要であり、作業が少ないため、分析が少し難しいにもかかわらず、好ましい選択になります。組み合わせた抗生物質アプローチにおける新しいMIC値は、修飾阻害ゾーンとして視覚化することができ、その後、相乗効果は式1によって決定することができる。

寒天プレートアプローチを使用する代わりに、マイクロブロスアプローチは、多くの場合、その柔軟性が高いため優先することができます(例えば、E検定ストリップの限界外の抗生物質の特定の濃度を選択する能力)。また、固相内の解離に依存しない液体溶液中の抗生物質の均一な分布のために、マイクロブロス検査はより敏感であることが示唆される。.96ウェルマイクロプレートのウェルは、一定数の細菌(106 cfu/mL:細菌濃度はOD600nm測定、濁り基準、または10倍の細菌連続希釈からめっきサンプルを広げることによって推定することができる)で接種され、および異なる希釈の抗生物質が井戸に加えられる。同様に、E検定ストリップにMICは、細菌の目に見える増殖を阻害する抗生物質の最も低濃度との交点(ウェル/スポット)として決定される。

実験的な目的

  • 以下のプロジェクトは、ペニシリンGと連鎖球菌群GのゲンタマイシンのMIC値を、E検定およびマイクロブロス希釈の2つの異なる方法によって決定する戦略について説明する。E検定では、ストレプトコッカス群Gに接種したミューラー・ヒントン寒天プレートをペニシリンGおよび/またはゲンタマイシンの勾配ストリップと組み合わせて使用した。50%溶解した馬の血液と20mg/mL β-NADを用いたMH-ブロスは、マイクロブロスアプローチでストレプトコッカス群Gと共に可溶性抗生物質と共に使用した。

材料

  • 血液寒天プレート上の細菌コロニー、4°Cで保存<7日
  • 血の寒天プレート
  • 0.5 マクファーランド標準
    • 1% バクル2
    • 1% H2SO4
  • 生理生理管(2 mL)
  • コットンチップアプリケーター
  • ミューラー・ヒントン寒天プレート(MHAプレート)
  • 50%のライズ馬の血液と20 mg/mL β-NAD(MH-F)のMHスープ
  • E検定ペニシリン/ゲンタマイシン(または目的の抗生物質)(BioMerieux、マーシー・レトワール、フランス、スウェーデン)
  • ペニシリン/ゲンタマイシン(または目的の抗生物質(粉末/溶液))

注:細菌の増殖に使用される特定の培地は、種によって異なる場合があります。

Procedimento

1. エプシロメーター試験(E検定) セットアップ 手袋とラボコートを着用する 70%エタノールを使用して殺菌してワークスペースを準備 ミュラー・ヒントン寒天プレート(MHAプレート)を収集 マクファーランド濁度規格No.0.5の準備 塩化バリウム(BaCl2)の1%溶液を調調します。100mL蒸留水に1グラ…

Resultados

MIC values in E-test
Individual MIC values were identified in Figure 1 as 0.094 μg/mL for penicillin G and 8 μg/mLfor gentamicin. For synergy tests, both demonstrated an MIC value for penicillin G of 0.064 μg/mL (Figures 2, 3), while gentamicin had an MIC 4 μg/mL for cross and non-cross tests. Note a slight discrepancy between the cross and non-cross tests may occur due to the different incubation times of the strips in the two settings.

Calculation of synergy
The equation for FIC is:

= 1.18 >0.5 (no synergy)

MIC determination in broth
Cloudiness of the wells indicated bacterial growth, and thus no inhibition occurred. The first clear well with penicillin G (Figure 4) contained 0.12 μg/mL penicillin G, and hence this was the MIC value. For gentamicin the first clear well was present at 8 μg/mL gentamicin. The penicillin G value was slightly higher than when using an E-test, due to the higher resolution of the strip (e.g. based on a 1.5x factor serial dilution, not a 2x factor).

Inoculum size
To determine the inoculum size, an approach as outlined in Figure 5 and 6 was used. Colonies were counted in the D-row (1000x dilution), adding up to 7, 8, and 8 in the triplicate series with a mean value of 7.67 cfu. The number of colonies neeed to be multiplied with the dilution factor (e.g. 1000x), as well as with 100 to obtain cfu/mL, giving an inoculum size of approximately 8 x 105, well within the targeted inoculum size of 105-6 cfu/mL.

Applications and Summary

Antibiotic resistance is a worldwide health problem. In order to determine resistance mechanisms of microbes, methods testing for synergy and antagonism with different antibiotics is crucial. The E-test method is rapid, easy to replicate, and can be used to investigate any synergistic potential of combination therapies. The broth dilution method can also be assessed to predict bactericidal activity. In order to investigate the resistance mechanisms of different microbes, knowledge of synergistic and antagonistic antibiotic interactions is crucial. Combining antibiotics may be a strategy to increase treatment efficacy and face antibiotic resistance. In the tests performed here, we were able to determine the MIC values of penicillin G and gentamicin for group G Streptococcus. We also demonstrated that the two antibiotics do not display synergistic effects, thus would not be a preferred treatment option for such infections.

Referências

  1. Tan SY, Tatsumura Y. Alexander Fleming (1881-1955): Discoverer of penicillin. Singapore Medical Journal. 56 (7):366-7. (2015)
  2. Aminov RI. A brief history of the antibiotic era: lessons learned and challenges for the future. Frontiers in Microbiology. 1:134. (2010)
  3. Pankey GA, Ashcraft DS, Dornelles A. Comparison of 3 E-test (®) methods and time-kill assay for determination of antimicrobial synergy against carbapenemase-producing Klebsiella species. Diagnostic Microbiology and Infectious Disease. 77 (3):220-6. (2013)
  4. EUCAST: European Committee On Antimicrobial Susceptibility Testing (www.eucast.org).
  5. Wiegand I, Hilpert K, Hancock RE. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature Protocols. 3 (2):163-75. (2008)
  6. Doern CD, When does 2 plus 2 equal 5? A review of antimicrobial synergy testing. Journal of Clinical Microbiology. 52 (12):4124-28. (2014)
  7. Worthington RJ, Melander C. Combination approaches to combat multi-drug resistant bacteria. Trends in Biotechnology. 31 (3):177-84. (2013)

Transcrição

Antibiotic susceptibility is defined as the sensitivity of a bacteria to antibiotics and can be measured using a broth dilution test or an Epsilometer test, also called an E-test.

In the broth dilution method, a standardized number of bacteria are added to a growth media containing serial antibiotic dilutions. If susceptible, the bacteria cannot grow at the higher antibiotic concentrations but continue to multiply at the lower antibiotic concentrations, causing media to turn turbid. The lowest antibiotic concentration at which the bacteria can no longer survive or multiply is referred to as the minimum inhibitory concentration, or MIC, value of the antibiotic for the given bacteria.

In an E-test, a plastic strip impregnated with a predefined gradient of antibiotic is applied over a freshly spread lawn of bacteria on a Mueller-Hinton agar, or MH-A, Petri plate. The antibiotic diffuses out into the agar media, where it is taken up by the bacteria. If susceptible, the bacteria cannot multiply and will die off, forming a clear zone around the E-strip, which is referred to as the growth inhibition zone. At the point where the growth intersects with the E-strip, the corresponding value on the scale gives the MIC value of the antibiotic.

Often antibiotics are used in combination to prevent the emergence of antibiotic resistant strains of bacteria. This often results in a synergistic, rather than additive, effect. Synergistic means that the combined effect of the two antibiotics is greater than the sum of their individual activities. However, the effect is considered significant only when the MIC value of the antibiotic combination decreases by at least two-fold. This criterion is evaluated by calculating the fractional inhibitory concentration, or FIC, index. By summing the ratio of the MIC of each antibiotic in combination with the MIC of each antibiotic individually, an FIC index less than 0.5 indicates synergy.

Antibiotic synergy can be measured using two E-test based methods: a non-cross test or a cross test. In a non-cross test, first, the E-strips for two different antibiotics with predetermined MIC values are applied to two separate plates. After the antibiotics have diffused into the medium, the original E-strips are removed and the E-strips for the alternate antibiotics are placed such that their MIC scales lay exactly over the MIC scales of the previous strips. In a cross test, which is a faster version of the non-cross test, the E-strips of the two antibiotics are placed together in a cross formation, such that the scales of their MIC marks form a 90 degree angle at the intersection. Following incubation in both techniques, the MIC value of each antibiotic in combination with the other antibiotic is read at the point where the growth inhibition zone intersects with the edge of the E-strip. Then, the FIC index is calculated.

This video will demonstrate how to determine the MIC value of a given antibiotic for a given bacteria using an E-test and a micro broth dilution test. You will also learn how to determine synergy between two antibiotics using a cross test and a non-cross test.

To begin, put on any appropriate personal protective equipment, including laboratory gloves and a lab coat. Next, sterilize the work space using 70% ethanol. Next, collect 15 milliliters of sterile Mueller-Hinton broth with 50% lysed horse blood and 20 milligrams per milliliter beta-nicotinamide. And five to eight Mueller-Hinton agar plates. Now, to prepare a McFarland turbidity standard number 0.5, measure out 9.95 milliliters of 1% sulfuric acid solution. Then, add 50 microliters of 1% barium chloride solution to the sulfuric acid solution. Vortex the solution well to obtain a turbid suspension. Cover the tube with aluminum foil and set it aside. Next, dispense one milliliter of saline solution into a 15 milliliter tube.

Use a sterile loop to scrape up a sample of the bacterial growth from your bacterial test plate, here, Streptococcus group G. Then, place the bacteria-laden loop into the saline solution, stir gently, and then vortex the tube well. Now, place the bacterial suspension and McFarland turbidity standards side by side and compare them for turbidity equivalence. Add either additional saline or bacterial colonies until the bacterial suspension’s turbidity matches that of the standard. Once the desired turbidity is obtained, dip a sterile cotton tip applicator into the bacterial suspension. To inoculate the MH-A plate, swab the entire surface of the plate gently with a zigzag motion. Next, label the bottom sides of the plates with the name of the bacteria and the date.

To begin, take out a penicillin G E-test strip, holding it by the edge with forceps. Gently place strip into the center of the freshly swabbed MH-A plate and replace the lid. In this example, a second antibiotic, gentamicin, is also tested. Thus, the strip placement process is repeated with the second plate and a gentamicin E-test strip. To determine the results of the E-test, collect the first plate that contains the penicillin G E-test strip. Now, determine the point where the inhibition zone intersects with the antibiotic strip. Read the corresponding numerical value on the scale. This value represents the MIC value of penicillin G. Determine the MIC value for gentamicin in the same manner.

To begin, inoculate an MH-A plate with Streptococcus group G strain bacteria. Label the bottom of the plate with the name of the bacteria, antibiotics to be used, and the date. Now, place an E-test strip for the antibiotic of interest in the center of the plate. Then, hold the second test strip at a 90 degree angle to the first strip and locate its MIC mark. Gently lay the second E-strip over the first at the point where the two MIC values intersect. Once the strips are placed, do not move them. Next, incubate the plates at 37 degrees celsius for 18 to 20 hours.

After inoculating two MH-A plates, with Streptococcus group G strain bacteria, place an E-test strip for one antibiotic on the surface of one plate. Then, place an E-test strip for the other antibiotic on the second plate as demonstrated. Using a plastic inoculation loop, mark the MIC value of each antibiotic on the surface of its respective plate. Next, cover the plates and incubate them at room temperature for one hour. After this, use forceps to remove the E strips. Next, collect one of the plates and an E-test strip for the other antibiotic. Hold the E-test strip over the imprint left by the first strip and locate the point where the MIC value on the E strip aligns with the marked line. Gently place the strip at this intersecting point. Repeat this process for the second plate and incubate both plates at 37 degrees celsius for 18 to 20 hours.

First, obtain a bacterial suspension with an established bacterial concentration and dilute the culture in MHF broth to achieve an OD600 of 0.003. Next, weigh out 16 milligrams of penicillin G and 128 milligrams of gentamicin. Transfer each weighed dry antibiotic into 215 milliliter conical tubes. Add 10 milliliters of distilled water to each of the conical tubes and mix well by vortexing. Label the tubes with the antibiotic name and concentration.

Performing the assay in triplicate, add 400 microliters of the working bacterial solution into the first wells of three rows of a 96-well microtiter plate. Next, add 200 microliters of the working bacterial solution in MHF broth to the wells of the three rows. Now, to generate a two-fold serial antibiotic dilution, first add four microliters of antibiotic stock to the first well, generating a 100 fold dilution. Sequentially, transfer 200 microliters of bacteria-antibiotic solution to each well, beginning from the first well through the second to last well in each row, ensure proper mixing by pipetting two to three times after every transfer. Discard the final 200 microliters of bacteria-antibiotic solution.

To determine the results of the broth micro dilution test for penicillin G, first locate the wells that exhibit no visible bacterial growth, indicated by a lack of turbidity. From these wells, identify the well with the lowest antibiotic concentration. This represents the MIC value of penicillin G for the tested bacteria. The MIC value of gentamicin can be determined using the same assay and technique.

To determine the results of the non-cross test, collect the first plate, which contains a penicillin G E strip. Then, determine the point where the growth inhibition zone intersects with the antibiotic strip. The corresponding value on the scale represents the MIC value for penicillin G in combination with gentamicin. In this example, the MIC value in combination is 0.064 micrograms per milliliter.

Now, collect the second plate, which contains the gentamicin E strip, and determine the MIC value in combination as previously demonstrated. To evaluate the effect of combination, first calculate the fractional inhibitory concentration or FIC for penicillin G by dividing the MIC in combination by the MIC of the antibiotic alone. Repeat this process for gentamicin. Then, calculate the FIC index using the equation shown here. A two-fold reduction in the MIC value in combination yields an FIC index value that is less than or equal to 0.5 and demonstrates synergy between penicillin G and gentamicin. In this case, the calculated FIC value is 1.18 which is greater than 0.5. Thus, the results do not demonstrate synergy between penicillin G and gentamicin against the Streptococcus group G strain.

To determine the results of the cross test, first determine the point where the growth inhibition zones intersect with their respective E strips. Read the numerical value on each E-test strip that corresponds to this intersection point. These values represent the MIC value in combination for penicillin G and gentamicin. Next, to evaluate the effect of the combination, calculate the FIC index using the equation shown here. In this example, the calculated FIC value is 1.18, which is greater than 0.5. This means that penicillin G and gentamicin do not act synergistically against the Streptococcus group G strain.

Tags

Cite This
JoVE Science Education Database. JoVE Science Education. Antibiotic Susceptibility Testing: Epsilometer Tests to Determine MIC Values of Two Antibiotics and Evaluate Antibiotic Synergy. JoVE, Cambridge, MA, (2023).