Summary

Identification of Growth Inhibition Phenotypes Induced by Expression of Bacterial Type III Effectors in Yeast

Published: March 30, 2010
doi:

Summary

In this video, we describe a procedure for the expression of bacterial type III effectors in yeast and the identification of effector-induced growth inhibition phenotypes. Such phenotypes can be subsequently exploited to elucidate effector functions and targets.

Abstract

Many Gram-negative pathogenic bacteria use a type III secretion system to translocate a suite of effector proteins into the cytosol of host cells. Within the cell, type III effectors subvert host cellular processes to suppress immune responses and promote pathogen growth. Numerous type III effectors of plant and animal bacterial pathogens have been identified to date, yet only a few of them are well characterized. Understanding the functions of these effectors has been undermined by a combination of functional redundancy in the effector repertoire of a given bacterial strain, the subtle effects that they may exert to increase virulence, roles that are possibly specific to certain infection stages, and difficulties in genetically manipulating certain pathogens. Expression of type III effectors in the budding yeast Saccharomyces cerevisiae may allow circumventing these limitations and aid to the functional characterization of effector proteins. Because type III effectors often target cellular processes that are conserved between yeast and other eukaryotes, their expression in yeast may result in growth inhibition phenotypes that can be exploited to elucidate effector functions and targets. Additional advantages to using yeast for functional studies of bacterial effectors include their genetic tractability, information on predicted functions of the vast majority of their ORFs, and availability of numerous tools and resources for both genome-wide and small-scale experiments. Here we discuss critical factors for designing a yeast system for the expression of bacterial type III effector proteins. These include an appropriate promoter for driving expression of the effector gene(s) of interest, the copy number of the effector gene, the epitope tag used to verify protein expression, and the yeast strain. We present procedures to induce expression of effectors in yeast and to verify their expression by immunoblotting. In addition, we describe a spotting assay on agar plates for the identification of effector-induced growth inhibition phenotypes. The use of this protocol may be extended to the study of pathogenicity factors delivered into the host cell by any pathogen and translocation mechanism.

Protocol

I. Designing a Yeast Expression System for Type III Effectors Calibrating a yeast system appropriate for expression of the type III effector(s) of interest is an important task and may require some trial and error. Factors of major relevance that should be considered and optimized when designing such a system are: 1) the promoter driving expression of the effector(s), 2) the copy number of the effector gene, 3) the epitope tag used to verify protein expression, and 4) the yeast strain. <p…

Discussion

In this presentation, we illustrated how to use the budding yeast Saccharomyces cerevisiae as a heterologous system for the expression of type III bacterial effector proteins and how to identify effector-induced growth inhibition phenotypes. Importantly, these phenotypes can be utilized in genetic screens to identify suppressors of the negative impact of effectors on yeast growth. Suppressors may represent either direct targets of the effector studied or proteins that participate in cellular processes affected b…

Acknowledgements

This work was supported by the Israel Science Foundation.

Materials

Material Name Type Company Catalogue Number Comment
Yeast extract   Difco 212750  
Peptone   Difco 211677  
D-glucose   Sigma G5767  
Agar   Difco 214010  
Sodium hydroxide (NaOH)   Sigma S8045  
Yeast nitrogen base w/o amino acids   Difco 291940  
Yeast synthetic drop-out medium supplement   Sigma Y2001  
D-galactose   Sigma G0750 >99%; <0.1% glucose
D-raffinose   Sigma R0250 >98%
L-leucine   Sigma L8000  
Uracil   Sigma U0750  
L-tryptophan   Sigma T0254  
L-histidine   Sigma H6034  
DNA, single stranded, from salmon testes   Sigma D7656  
Dimethyl sulfoxide (DMSO)   Sigma D5879 Desiccate
Hydrochloric acid (HCl)   Sigma H1758  
Polyethylene glycol (PEG) 3350   Sigma P4338  
Lithium acetate (LiAc)   Sigma L4958  
Tris (base)   J.T. Baker 4109-02  
Ethylenediamine-tetraacetic acid (EDTA)   Sigma E5134  
β-mercaptoethanol   Sigma M6250  
Glycerol   Sigma G5516  
Bromophenol blue   Sigma B6131  
Dodecyl sulfate sodium salt (SDS)   Merck 8.22050.1000  
Centrifuge tubes (15 ml)   Corning 430052 Sterile
Spectrophotometer cuvette (10x4x45 mm)   Sarstedt 67.742  
Inoculation loop   Sigma Z643009 Sterile
Parafilm   Sigma P7543  
pH indicator strip, pH 6.5-10.0   Merck 1.09543.0001  

References

  1. Siggers, K. A., Lesser, C. F. The yeast Saccharomyces cerevisiae: a versatile model system for the identification and characterization of bacterial virulence proteins. Cell Host Microbe. 4, 8-15 (2008).
  2. Parsons, A. B. Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways. Nat. Biotechnol. 22, 62-69 (2004).
  3. Munkvold, K. R., Martin, M. E., Bronstein, P. A., Collmer, A. A survey of the Pseudomonas syringae pv. tomato DC3000 type III secretion system effector repertoire reveals several effectors that are deleterious when expressed in Saccharomyces cerevisiae. Mol. Plant-Microbe Interact. 21, 490-502 (2008).
  4. Curak, J., Rohde, J., Stagljar, I. Yeast as a tool to study bacterial effectors. Curr. Opin. Microbiol. 12, 18-23 (2009).
  5. Slagowski, N. L., Kramer, R. W., Morrison, M. F., LaBaer, J., Lesser, C. F. A functional genomic yeast screen to identify pathogenic bacterial proteins. PLoS Pathog. 4, e9-e9 (2008).
  6. Huang, J., Lesser, C. F., Lory, S. The essential role of the CopN protein in Chlamydia pneumoniae intracellular growth. Nature. 456, 112-115 (2008).

Play Video

Cite This Article
Salomon, D., Sessa, G. Identification of Growth Inhibition Phenotypes Induced by Expression of Bacterial Type III Effectors in Yeast. J. Vis. Exp. (37), e1865, doi:10.3791/1865 (2010).

View Video