Summary

Non-invasive Imaging of Leukocyte Homing and Migration in vivo

Published: December 05, 2010
doi:

Summary

Here, we describe a non-invasive two-photon (2P) microscopy approach to study leukocyte homing in the mouse footpad. We discuss the technical aspects of our tissue imaging preparation and walk the reader through a typical experiment from initial set up to execution and data collection.

Abstract

Two-photon (2P) microscopy is a high resolution imaging technique that has been broadly adapted by biologists. The value of 2P microscopy is that it provides rich spatiotemporal information regarding cell behaviors within intact tissues and in live mice. Leukocyte recruitment plays a significant role in host defense against infection and when unchecked, can contribute to inflammatory and autoimmune diseases. Studying leukocyte recruitment in vivo is technically challenging since cells are moving rapidly within vessels located deep within light scattering tissues. To date, most intravital imaging studies require surgical preparation to expose the blood vessels and tissues. To avoid the tissue damage and inflammation induced by surgery itself, here, we describe a non-invasive single-cell imaging approach that can be used to study leukocyte trafficking in the mouse footpad and phalanges. We discuss the technical aspects of our 2P imaging preparation and walk the reader through a typical experiment from initial set up to execution and data collection.

Protocol

1. Animal preparation: This protocol uses adult female adult LysM-eGFP mice, in which neutrophils and macrophages are fluorescently labeled by the expression of eGFP 1. Labeling blood vessels: To visualize blood vessels, 15μl of non-targeted quantum dots (655nm) are diluted into 100 μl of PBS and injected intravenously into the mouse 10-30 min before imaging. Anesthesia: Place the mouse in the induction chamber …

Discussion

In this video protocol we demonstrate the procedures for non-invasive 2P imaging of leukocyte recruitment in response to inflammation.

The footpad is a classic physiological site for studying inflammation such as allergy, infection and autoimmune disease 4-7. 2P imaging provides a detailed picture of distinct steps in leukocyte trafficking pathways, from rolling and adhesion in the blood vessels to chemotaxis to sites of effector function. We have found that the leukocyte recrui…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by NIH grant R01-3155-53502 and Washington University-Pfizer Biomedical Research Agreement.

Materials

Material Name Type Company Catalogue Number Comment
Isoflurane, USP   Butler Animal Health Supply 029405  
655nm non-targeted quantum dots   Invitrogen Q21021MP  
Tetramathylrhodamine conjugated
E. coli BioParticles
  Invitrogen E2862  
Listeria monocytogenes (Lm)   Reference 2    
Quick gel   Duro    
Puralube Vet Ointment   Pharmaderm Animal Health    
Insulin syringes   BD 08290-3284-38  
PBS   Thermo Scirntific SH30256.02  

References

  1. Faust, N., Varas, F., Kelly, L. M., Heck, S., Graf, T. Insertion of enhanced green fluorescent protein into the lysozyme gene creates mice with green fluorescent granulocytes and macrophages. Blood. 96, 719-726 (2000).
  2. Zinselmeyer, B. H., Lynch, J. N., Zhang, X., Aoshi, T., Miller, M. J. Video-rate two-photon imaging of mouse footpad – a promising model for studying leukocyte recruitment dynamics during inflammation. Inflamm Res. 57, 93-96 (2008).
  3. Zinselmeyer, B. H., Dempster, J., Wokosin, D. L., Cannon, J. J., Pless, R., Parker, I., Miller, M. J. Chapter 16. Two-photon microscopy and multidimensional analysis of cell dynamics. Methods Enzymol. 461, 349-378 (2009).
  4. Gray, D. F., Jennings, P. A. Allergy in experimental mouse tuberculosis. Am Rev Tuberc. 72, 171-195 (1955).
  5. Lin, A., Loughman, J. A., Zinselmeyer, B. H., Miller, M. J., Caparon, M. G. Streptolysin S inhibits neutrophil recruitment during the early stages of Streptococcus pyogenes infection. Infect Immun. 77, 5190-5201 (2009).
  6. Smith, C. J., Zhang, Y., Koboldt, C. M., Muhammad, J., Zweifel, B. S., Shaffer, A., Talley, J. J., Masferrer, J. L., Seibert, K., Isakson, P. C. Pharmacological analysis of cyclooxygenase-1 in inflammation. Proc Natl Acad Sci U S A. 95, 13313-13318 (1998).
  7. Wipke, B. T., Allen, P. M. Essential role of neutrophils in the initiation and progression of a murine model of rheumatoid arthritis. J Immunol. 167, 1601-1608 (2001).
  8. Baez, S. An open cremaster muscle preparation for the study of blood vessels by in vivo microscopy. Microvasc Res. 5, 384-394 (1973).
  9. Mempel, T. R., Scimone, M. L., Mora, J. R., von Andrian, U. H. in vivo imaging of leukocyte trafficking in blood vessels and tissues. Curr Opin Immunol. 16, 406-417 (2004).
  10. Miller, M. J., Wei, S. H., Cahalan, M. D., Parker, I. Autonomous T cell trafficking examined in vivo with intravital two-photon microscopy. Proc Natl Acad Sci U S A. 100, 2604-2609 (2003).
check_url/2062?article_type=t

Play Video

Cite This Article
Wang, B., Zinselmeyer, B. H., McDole, J. R., Gieselman, P. A., Miller, M. J. Non-invasive Imaging of Leukocyte Homing and Migration in vivo. J. Vis. Exp. (46), e2062, doi:10.3791/2062 (2010).

View Video