Summary

Intravital Microscopy of the Mouse Brain Microcirculation using a Closed Cranial Window

Published: November 18, 2010
doi:

Summary

Intravital microscopy to follow temporal and spatial hemodynamic and inflammatory events in the pial microcirculation.

Abstract

This experimental model was designed to assess the mouse pial microcirculation during acute and chronic, physiological and pathophysiological hemodynamic, inflammatory and metabolic conditions, using in vivo fluorescence microscopy. A closed cranial window is placed over the left parieto-occipital cortex of the mice. Local microcirculation is recorded in real time through the window using epi and fluorescence illumination, and measurements of vessels diameters and red blood cell (RBC) velocities are performed. RBC velocity is measured using real-time cross-correlation and/or fluorescent-labeled erythrocytes. Leukocyte and platelet adherence to pial vessels and assessment of perfusion and vascular leakage are made with the help of fluorescence-labeled markers such as Albumin-FITC and anti-CD45-TxR antibodies. Microcirculation can be repeatedly video-recorded over several days. We used for the first time the close window brain intravital microscopy to study the pial microcirculation to follow dynamic changes during the course of Plasmodium berghei ANKA infection in mice and show that expression of CM is associated with microcirculatory dysfunctions characterized by vasoconstriction, profound decrease in blood flow and eventually vascular collapse.

Protocol

1. Craniotomy A craniotomy in 8-to-10-week old mice needs to be performed in advance as previously described1, except that a titanium bar is not placed in the head of the animal. The chronic cranial window is a stable preparation allowing examination of the pial microcirculation even months after being implanted. Usually, we perform our studies 2-3 weeks after the cranial window implantation. 2. Intravital microscopy Two-three weeks after c…

Discussion

The intravital microscopy method described here provides a unique and powerful tool for detailed observation of the pial microcirculation in the mouse. It allows singling out individual arterioles and venules and measuring changes of a number of parameters such as vessel diameters, RBC velocities, blood flow, adherence and rolling of leukocytes, platelets and other blood elements, vascular leakage, tissue pH and pO2 and potentially many other applications. The in vivo vascular response can be promptly evaluated …

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by grants R01-HL87290, R01-HL87290-S1 and R01-AI082610 from the National Institutes of Health to LJMC.

Materials

Material Name Type Company Catalogue Number Comment
Isoflurane   Baxter FDG9623  
Carbocyanine dye Dil   Molecular Probes D306  
Albumin-FITC   Sigma-Aldrich A9771  
Anti-CD45-TxR Ab   Invitrogen MCD4517  
P. berghei ANKA-GFP   MR4 MRA-865  

References

  1. Mostany, R., Portera-Cailliau, C. A craniotomy surgery procedure for chronic brain imaging. J. Vis. Exp. (15), (2008).
  2. Intaglietta, M., Tompkins, W. R. Microvascular measurements by video image shearing and splitting. Microvasc. Res. 5, 309-312 (1973).
  3. Briceno, J. C., Cabrales, P., Tsai, A. G., Intaglietta, M. Radial displacement of red blood cells during hemodilution and the effect on arteriolar oxygen profile. Am. J. Physiol. Heart Circ. Physiol. 286, 1223-1228 (2004).
  4. Bishop, J. J., Nance, P. R., Popel, A. S., Intaglietta, M., Johnson, P. C. Relationship between erythrocyte aggregate size and flow rate in skeletal muscle venules. Am. J. Physiol. Heart Circ. Physiol. 286, H113-120 (2004).
  5. Baldwin, A. L. Modified hemoglobins produce venular interendothelial gaps and albumin leakage in the rat mesentery. Am. J. Physiol. Heart Circ. Physiol. 277, H650-H659 (1999).
  6. Cabrales, P., Zanini, G. M., Meays, D., Frangos, J. A., Carvalho, L. J. Murine cerebral malaria is associated with a vasospasm-like microcirculatory dysfunction, and survival upon rescue treatment is markedly increased by nimodipine. Am. J. Pathol. 176 (3), 1306-1315 (2010).
check_url/2184?article_type=t

Play Video

Cite This Article
Cabrales, P., Carvalho, L. J. M. Intravital Microscopy of the Mouse Brain Microcirculation using a Closed Cranial Window. J. Vis. Exp. (45), e2184, doi:10.3791/2184 (2010).

View Video