Summary

कार्यात्मक चुंबकीय अनुनाद इमेजिंग और प्रमुख प्रभाव टेलीमेटरी प्रणाली का प्रयोग युवा में खेल से संबंधित संघट्टन के प्रभाव की एक जांच

Published: January 12, 2011
doi:

Summary

यह आलेख हल्का घाव मस्तिष्क की चोट के निदान और युवाओं में वसूली के लिए एक बहु modal दृष्टिकोण का एक सिंहावलोकन प्रदान करता है. इस दृष्टिकोण कार्यात्मक चुंबकीय अनुनाद इमेजिंग और प्रमुख प्रभाव टेलीमेटरी संज्ञानात्मक परीक्षण के दौरान सिर प्रभावों और मस्तिष्क गतिविधि के बीच संबंधों की निगरानी सिस्टम के साथ neuropsychological परीक्षण को जोड़ती है.

Abstract

One of the most commonly reported injuries in children who participate in sports is concussion or mild traumatic brain injury (mTBI)1. Children and youth involved in organized sports such as competitive hockey are nearly six times more likely to suffer a severe concussion compared to children involved in other leisure physical activities2. While the most common cognitive sequelae of mTBI appear similar for children and adults, the recovery profile and breadth of consequences in children remains largely unknown2, as does the influence of pre-injury characteristics (e.g. gender) and injury details (e.g. magnitude and direction of impact) on long-term outcomes. Competitive sports, such as hockey, allow the rare opportunity to utilize a pre-post design to obtain pre-injury data before concussion occurs on youth characteristics and functioning and to relate this to outcome following injury. Our primary goals are to refine pediatric concussion diagnosis and management based on research evidence that is specific to children and youth. To do this we use new, multi-modal and integrative approaches that will:


1.Evaluate the immediate effects of head trauma in youth
2.Monitor the resolution of post-concussion symptoms (PCS) and cognitive performance during recovery
3.Utilize new methods to verify brain injury and recovery

To achieve our goals, we have implemented the Head Impact Telemetry (HIT) System. (Simbex; Lebanon, NH, USA). This system equips commercially available Easton S9 hockey helmets (Easton-Bell Sports; Van Nuys, CA, USA) with single-axis accelerometers designed to measure real-time head accelerations during contact sport participation 3 – 5. By using telemetric technology, the magnitude of acceleration and location of all head impacts during sport participation can be objectively detected and recorded. We also use functional magnetic resonance imaging (fMRI) to localize and assess changes in neural activity specifically in the medial temporal and frontal lobes during the performance of cognitive tasks, since those are the cerebral regions most sensitive to concussive head injury 6. Finally, we are acquiring structural imaging data sensitive to damage in brain white matter.

Protocol

1. विषय पर पूर्व चोट neuropsychological आधारभूत प्रोफ़ाइल प्राप्त करना पहले परीक्षण के लिए पहुंचने विषय सुनिश्चित करने के लिए, सभी उपकरण ठीक से कार्य कर रहा है और परीक्षण के लिए तैयार है और कमरे में अनावश्यक distract…

Discussion

हम अनुमान है कि उन युवाओं को जो मस्तिष्क सफेद बात पर सबसे बड़ा प्रभाव दिखाने के मस्तिष्क गतिविधि की सबसे बड़ी पुनर्गठन, और सबसे लंबे समय तक व्यवहार और तंत्रिका वसूली अवधि दिखाएगा. इस शोध में बाल चिकित्?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

हम स्वास्थ्य (CIHR) अनुसंधान और ओंटारियो Neurotrauma (ONF) फाउंडेशन, जो इस शोध के लिए धन प्रदान किया है की कनाडा के संस्थानों को धन्यवाद देना चाहूंगा.

Materials

Name Company Comments
AccuGait Portable Gait and Balance Platform
(Balance Assessment)
AMTI www.amti.biz
NetForce Balance Data Acquisition Software AMTI www.amti.biz
Visual Conflict Dome   Fabricated by researchers; modeled after: Lovell MR, Collins MW. Neuropsychological assessment of the college football player. J Head Trauma Rehabil. 1998;13(2):9-26.
Airex Balance Pad Airex www.bebalanced.net
Smedlay’s Dynamometer, 100 kg(Grip Strength) TTM, Tokyo  
Grooved Pegboard Test Lafayette Instrument Company www.lafayetteinstrument.com
Axon Jump Mat Vacumed www.vacumed.com
Strength Bar   Fabricated by researchers:
  • 31″ titanium lacrosse handle
  • Two 40″ utility chains
  • 24″ x 26″ plywood platform
  • Two dock ring fasteners
  • Two U-bolts (1″ width)
Head Impact Telemetry (HIT) System Simbex www.simbex.com
Post-Concussion Symptoms Scale Revised (PCS-R)   Adapted from:
Lovell MR, Collins MW. Neuropsychological assessment of the college football player. J Head Trauma Rehabil. 1998;13(2):9-26.
GE Discovery™ MR750 3.0T MRI Scanner GE www.gehealthcare.com
GE 8 channel head coil GE www.gehealthcare.com
Lumitouch Reply System Lightwave Medical Industries Vancouver, BC 1-(604)-875-4529
Back projection screen (for presenting fMRI stimuli) Unknown  
Disposable foam ear plugs PAR Inc. www.parinc.com
Neuropsychological Tests Pearson Assessments www.pearsonassessments.com

References

  1. Browne, G. J., Lam, L. T. Concussive head injury in children and adolescents related to sports and other leisure physical activities. Br. J .Sports Med. 40, 163-168 (2006).
  2. McCrory, P., Collie, A., Anderson, V., Davis, G. Can we manage sport related concussion in children the same as in adults. Br. J .Sports Med. 38, 516-519 (2004).
  3. Brolinson, P. G. Analysis of linear head accelerations from collegiate football impacts. Curr. Sports Med. Rep. 5, 23-28 (2006).
  4. Duma, S. M. Analysis of real-time head accelerations in collegiate football players. Clin. J. Sport Med. 15, 3-8 (2005).
  5. Schnebel, B., Gwin, J. T., Anderson, S., Gatlin, R. In vivo study of head impacts in football: a comparison of National Collegiate Athletic Association Division I versus high school impacts. Neurosurgery. 60, 490-495 (2007).
  6. Chen, J. K. Functional abnormalities in symptomatic concussed athletes: an fMRI study. Neuroimage. 22, 68-82 (2004).
  7. Glover, G. H., Law, C. S. Spiral-in/out BOLD fMRI for increased SNR and reduced susceptibility artifacts. Magn. Reson. Med. 46, 515-522 (2001).
  8. Smith, S. M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T. E., Mackay, C. E., Watkins, K. E., Ciccarelli, O., Cader, M. Z., Matthews, P. M., Behrens, T. E. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage. 31, 1487-1505 (2006).
  9. Gibson, E., Gao, F., Black, S. E., Lobaugh, N. J. Automatic Segmentation of White Matter Hyperintensities in FLAIR images at 3T. J. Magn. Reson. Imaging. , (2009).
  10. McIntosh, A. R., Bookstein, F. L., Haxby, J. V., Grady, C. L. Spatial pattern analysis of functional brain images using Partial Least Squares. NeuroImage. 3, 143-157 (1996).
  11. McIntosh, A., Gonzalez-Lima, F. Network interactions among limbic cortices, basal forebrain and cerebellum differentiate a tone conditioned as a Pavlovian excitor or inhibitor: fluorodeoxyglucose and covariance structural modeling. J. Neurophysiol. 72, 1717-1733 (1994).
  12. McIntosh, A., Lobaugh, N. Partial least squares analysis of neuroimaging data: applications and advances. Neuroimage. 23, 250-263 (2004).
  13. Frackowiack, R. S. J., Frith, C. D. . Human Brain Function. , (2003).
check_url/2226?article_type=t

Play Video

Cite This Article
Keightley, M., Green, S., Reed, N., Agnihotri, S., Wilkinson, A., Lobaugh, N. An Investigation of the Effects of Sports-related Concussion in Youth Using Functional Magnetic Resonance Imaging and the Head Impact Telemetry System. J. Vis. Exp. (47), e2226, doi:10.3791/2226 (2011).

View Video