Summary

Micropatterned सतहों Hyaluronic एसिड कैंसर कोशिकाओं के साथ संबंधों का अध्ययन करने के लिए

Published: December 22, 2010
doi:

Summary

एक उपन्यास दृष्टिकोण है कि exogenous hyaluronic एसिड (हेक्टेयर) के साथ कैंसर कोशिका बातचीत के उच्च संकल्प विश्लेषण की अनुमति देता है वर्णित है. नमूनों सतहों carbodiimide रसायन शास्त्र और microcontact मुद्रण के संयोजन के द्वारा गढ़े हैं.

Abstract

Cancer invasion and progression involves a motile cell phenotype, which is under complex regulation by growth factors/cytokines and extracellular matrix (ECM) components within the tumor microenvironment. Hyaluronic acid (HA) is one stromal ECM component that is known to facilitate tumor progression by enhancing invasion, growth, and angiogenesis1. Interaction of HA with its cell surface receptor CD44 induces signaling events that promote tumor cell growth, survival, and migration, thereby increasing metastatic spread2-3. HA is an anionic, nonsulfated glycosaminoglycan composed of repeating units of D-glucuronic acid and D-N-acetylglucosamine. Due to the presence of carboxyl and hydroxyl groups on repeating disaccharide units, native HA is largely hydrophilic and amenable to chemical modifications that introduce sulfate groups for photoreative immobilization 4-5. Previous studies involving the immobilizations of HA onto surfaces utilize the bioresistant behavior of HA and its sulfated derivative to control cell adhesion onto surfaces6-7. In these studies cell adhesion preferentially occurs on non-HA patterned regions.

To analyze cellular interactions with exogenous HA, we have developed patterned functionalized surfaces that enable a controllable study and high-resolution visualization of cancer cell interactions with HA. We utilized microcontact printing (uCP) to define discrete patterned regions of HA on glass surfaces. A “tethering” approach that applies carbodiimide linking chemistry to immobilize HA was used 8. Glass surfaces were microcontact printed with an aminosilane and reacted with a HA solution of optimized ratios of EDC and NHS to enable HA immobilization in patterned arrays. Incorporating carbodiimide chemistry with mCP enabled the immobilization of HA to defined regions, creating surfaces suitable for in vitro applications. Both colon cancer cells and breast cancer cells implicitly interacted with the HA micropatterned surfaces. Cancer cell adhesion occurred within 24 hours with proliferation by 48 hours. Using HA micropatterned surfaces, we demonstrated that cancer cell adhesion occurs through the HA receptor CD44. Furthermore, HA patterned surfaces were compatible with scanning electron microscopy (SEM) and allowed high resolution imaging of cancer cell adhesive protrusions and spreading on HA patterns to analyze cancer cell motility on exogenous HA.

Protocol

1. Micropatterned स्टाम्प निर्माण के लिए मानक Photolithography इथेनॉल के साथ एक नए सिलिकॉन वफ़र कुल्ला और हवा की धारा के साथ शुष्क. वफ़र संभाल और पूरी प्रक्रिया के दौरान सतह दोषों को रोकने संदंश का प्रयोग करें. स्थान…

Discussion

हा micropatterning विधि प्रस्तुत exogenous हा के साथ सेल बातचीत के अध्ययन की अनुमति देता है. हा कैंसर 1 प्रगति में एक महत्वपूर्ण भूमिका निभा जाना जाता है लेकिन वहाँ सीमित कैंसर कोशिकाओं के दो आयामी हा नमूनों सतहों ?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

लेखक जॉन्स हॉपकिन्स, सामग्री अनुसंधान विज्ञान और राष्ट्रीय विज्ञान फाउंडेशन के माध्यम से इंजीनियरिंग सेंटर के हिस्से के रूप में वित्त पोषित सतह विश्लेषण प्रयोगशाला का उपयोग स्वीकार करते हैं. एलईडी एक IGERT प्रशिक्षु और एक राष्ट्रीय विज्ञान फाउंडेशन ग्रेजुएट बंदे है. इस शोध आंशिक रूप से NIH अनुदान U54CA143868 द्वारा समर्थित किया गया.

Materials

Material Name Type Company Catalogue Number Comment
SU-2025 photoresist   MicroChem Corp. Y111069  
SU-8 developer   MicroChem Corp. Y020100  
Sylgard 184   Dow Corning    
3-aminopropyltrimethoxysilane (APTMS)   Sigma-Aldrich 281778  
2- [methoxy(polyethyleneoxy) propyl] trimethoxysilane (Peg-silane)   Gelest Inc SIM6492.7  
1-Ethyl-3- (3-dimethylaminopropyl) carbodiimide   Thermo Scientific 22980  
N-hydroxysuccinimide (NHS)   Thermo Scientific 24500  
Fluorescein labeled hyaluronic acid (FL-HA)   Sigma-Aldrick F1177 Reconstitute with 10ml of DI water
MDA-MB-231 breast carcinoma cells   ATCC HTB-26  
LS174t colon carcinoma cells   ATCC Cl-188  

References

  1. Toole, B. P., Wight, T. N., Tammi, M. I. Hyaluronan-cell interactions in cancer and vascular disease. Journal of Biological Chemistry. 277, 4593-4596 (2002).
  2. Hamilton, S. R. The Hyaluronan Receptors CD44 and Rhamm (CD168) Form Complexes with ERK1,2 That Sustain High Basal Motility in Breast Cancer Cells. Journal of Biological Chemistry. 282, 16667-16680 (2007).
  3. Götte, M., Yip, G. W. Heparanase, Hyaluronan, and CD44 in Cancers: A Breast Carcinoma Perspective. Cancer Research. 66, 10233-10237 (2006).
  4. Lord, M. S., Pasqui, D., Barbucci, R., Milthorpe, B. K. Protein adsorption on derivatives of hyaluronic acid and subsequent cellular response. Journal of Biomedical Materials Research. Part A 91, 635-646 (2009).
  5. Barbucci, R. Modification of hyaluronic acid by sulphate groups insertion to obtain a heparin-like molecule. Gazz. Chim. Ital. 125, 169-180 (1995).
  6. Morra, M., Cassinelli, C. Non-fouling properties of polysaccharide-coated surfaces. Journal of Biomaterials Science, Polymer Edition. 10, 1107-1124 (1999).
  7. Khademhosseini, A. Layer-by-layer deposition of hyaluronic acid and poly-L-lysine for patterned cell co-cultures. Biomaterials. 25, 3583-3592 (2004).
  8. Ibrahim, S., Joddar, B., Craps, M., Ramamurthi, A. A surface-tethered model to assess size-specific effects of hyaluronan (HA) on endothelial cells. Biomaterials. 28, 825-835 (2007).
  9. Dickinson, L. E., Ho, C. C., Wang, G. M., Stebe, K. J., Gerecht, S. Functional surfaces for high-resolution analysis of cancer cell interactions on exogenous hyaluronic acid. Biomaterials. 31, 5472-5478 (2010).
  10. Gao, F. Hyaluronan oligosaccharides promote excisional wound healing through enhanced angiogenesis. Matrix Biology. 29, 107-116 (2010).
  11. Slevin, M. Hyaluronan-mediated angiogenesis in vascular disease: Uncovering RHAMM and CD44 receptor signaling pathways. Matrix Biology. 26, 58-68 (2007).
check_url/2413?article_type=t

Play Video

Cite This Article
Dickinson, L. E., Gerecht, S. Micropatterned Surfaces to Study Hyaluronic Acid Interactions with Cancer Cells. J. Vis. Exp. (46), e2413, doi:10.3791/2413 (2010).

View Video