Summary

Imaging Cell Shape Change in Living Drosophila Embryos

Published: March 30, 2011
doi:

Summary

Early development of the fruit fly, Drosophila melanogaster, is characterized by a number of cell shape changes that are well suited for imaging approaches. This article will describe basic tools and methods required for live confocal imaging of Drosophila embryos, and will focus on a cell shape change called cellularization.

Abstract

The developing Drosophila melanogaster embryo undergoes a number of cell shape changes that are highly amenable to live confocal imaging. Cell shape changes in the fly are analogous to those in higher organisms, and they drive tissue morphogenesis. So, in many cases, their study has direct implications for understanding human disease (Table 1)1-5. On the sub-cellular scale, these cell shape changes are the product of activities ranging from gene expression to signal transduction, cell polarity, cytoskeletal remodeling and membrane trafficking. Thus, the Drosophila embryo provides not only the context to evaluate cell shape changes as they relate to tissue morphogenesis, but also offers a completely physiological environment to study the sub-cellular activities that shape cells.

The protocol described here is designed to image a specific cell shape change called cellularization. Cellularization is a process of dramatic plasma membrane growth, and it ultimately converts the syncytial embryo into the cellular blastoderm. That is, at interphase of mitotic cycle 14, the plasma membrane simultaneously invaginates around each of ~6000 cortically anchored nuclei to generate a sheet of primary epithelial cells. Counter to previous suggestions, cellularization is not driven by Myosin-2 contractility6, but is instead fueled largely by exocytosis of membrane from internal stores7. Thus, cellularization is an excellent system for studying membrane trafficking during cell shape changes that require plasma membrane invagination or expansion, such as cytokinesis or transverse-tubule (T-tubule) morphogenesis in muscle.

Note that this protocol is easily applied to the imaging of other cell shape changes in the fly embryo, and only requires slight adaptations such as changing the stage of embryo collection, or using “embryo glue” to mount the embryo in a specific orientation (Table 1)8-19. In all cases, the workflow is basically the same (Figure 1). Standard methods for cloning and Drosophila transgenesis are used to prepare stable fly stocks that express a protein of interest, fused to Green Fluorescent Protein (GFP) or its variants, and these flies provide a renewable source of embryos. Alternatively, fluorescent proteins/probes are directly introduced into fly embryos via straightforward micro-injection techniques9-10. Then, depending on the developmental event and cell shape change to be imaged, embryos are collected and staged by morphology on a dissecting microscope, and finally positioned and mounted for time-lapse imaging on a confocal microscope.

Protocol

1. Assemble Embryo Collection Cups Cut the bottom off of a 100 mL Tri-corn beaker with a razor, making the edge as smooth as possible. The cups are easier to handle if you also trim the three corners off of the top, though this is not absolutely necessary. Cut a square of wire mesh (6 cm x 6 cm). On a pre-warmed hot plate, inside of a fume hood, layer the square of wire mesh on top of a piece of heavy-duty aluminum foil. Push the cut bottom edge of the cup firmly onto the hot mesh. Wait for a f…

Discussion

The protocol described herein will permit the live, confocal imaging of a number of cell shape changes in the developing fly embryo. GFP stocks for imaging can be prepared by an individual lab (Table 2), but many such stocks are also publicly available from centers such as Bloomington Drosophila Stock Center at Indiana University (http://flystocks.bio.indiana.edu) and FlyTrap Stock Center at Yale University (http://flytrap.med….

Disclosures

The authors have nothing to disclose.

Acknowledgements

We gratefully acknowledge Eric Wieschaus, who provided the foundation on which this protocol was developed. Our work is supported by a Verna & Marrs McLean Department of Biochemistry and Molecular Biology Start-up Award, Baylor College of Medicine.

Materials

Material Name Type Company Catalogue Number Comment
Slides   Fisherbrand/Fisher Scientific 12-550-343  
Cover slips 25×25   Fisher Scientific (Corning #2865-25) 1 2-524C  
Squirt bottles (H2O)   Fisher Scientific 02-897-11  
50 ml Falcon tubes   Fisher Scientific (BD# 352070) 14-432-22  
Bulbs for small pipets, 1 mL   Fisherbrand/Fisher Scientific 03-448-21  
Scintillation vials with caps   VWR (Wheaton #986546) 66021-533  
Tri-Corn Beakers, 100 mL   Electron Microscopy Sciences 60970  
BD Falcon Petri dish 60x15mm   Fisher Scientific (BD# 351007) 08757 100B  
BD Falcon Cell strainer   Fisher Scientific (BD#352350) 08-771-2  
Yellow pipet tips   Ranin L200  
Stainless steel mesh, 304, 12×24   Small Parts CX-0150-F-01  
Glass 5¾ inch Pasteur Pipets   Fisherbrand/Fisher Scientific 13-678-20B  
P4 Filter paper   Fisherbrand/Fisher Scientific 09-803-6F  
Rubber bands   Office Max A620645  
Scotch double-sided tape, ½ inch   Office Max A8137DM-2  
Robert Simmons Expression paint brushes E85 round #2   Jerry’s Artarama 56460  
Dumont #5 Forceps High Precision Inox   Electron Microscopy Services 72701-DZ  
Razor blades   VWR (BD #214010) 55411-050  
Halocarbon Oil 27   Sigma-Aldrich H 8773  
Heptane   Fisher Chemical/Fisher Scientific H360-1  
BD Bacto Agar   VWR (BD# 214010) 90000-760  
Sucrose   Sigma-Aldrich S7903  
p-Hydroxybenzoic acid   Sigma-Aldrich H5501  
Red Star Active Dry Yeast   LeSaffre 15700  
Paper towels, C-fold   Kleenex    
Heavy duty aluminum foil   Reynolds Wrap    
Bleach   Austin’s A-1 Commercial    
100% Apple juice   Ocean Spray or Tree Top    

References

  1. Sagona, A. P., Stenmark, H. Cytokinesis and cancer. FEBS Lett. 584, 2652-2661 (2010).
  2. Baum, B., Settleman, J., Quinlan, M. P. Transitions between epithelial and mesenchymal states in development and disease. Semin Cell Dev Biol. 19, 294-308 (2008).
  3. Kibar, Z., Capra, V., Gros, P. Toward understanding the genetic basis of neural tube defects. Clin Genet. 71, 295-310 (2007).
  4. Jazwinska, A., Ribeiro, C., Affolter, M. Epithelial tube morphogenesis during Drosophila tracheal development requires Piopio, a luminal ZP protein. Nat Cell Biol. 5, 895-901 (2003).
  5. Martin, P., Parkhurst, S. M. Parallels between tissue repair and embryo morphogenesis. Development. 131, 3021-3034 (2004).
  6. Royou, A., Field, C., Sisson, J. C., Sullivan, W., Karess, R. Reassessing the role and dynamics of nonmuscle myosin II during furrow formation in early Drosophila embryos. Mol Biol Cell. 15, 838-850 (2004).
  7. Lecuit, T., Wieschaus, E. Polarized insertion of new membrane from a cytoplasmic reservoir during cleavage of the Drosophila embryo. J Cell Biol. 150, 849-860 (2000).
  8. Mavrakis, M., Rikhy, R., Lippincott-Schwartz, J. Plasma membrane polarity and compartmentalization are established before cellularization in the fly embryo. Dev Cell. 16, 93-104 (2009).
  9. Cao, J., Crest, J., Fasulo, B., Sullivan, W. Cortical Actin Dynamics Facilitate Early-Stage Centrosome Separation. Curr Biol. , (2010).
  10. Cao, J., Albertson, R., Riggs, B., Field, C. M., Sullivan, W. N. u. f. a Rab11 effector, maintains cytokinetic furrow integrity by promoting local actin polymerization. J Cell Biol. 182, 301-313 (2008).
  11. Sokac, A. M., Wieschaus, E. Local actin-dependent endocytosis is zygotically controlled to initiate Drosophila cellularization. Dev Cell. 14, 775-786 (2008).
  12. Fox, D. T., Peifer, M. Abelson kinase (Abl) and RhoGEF2 regulate actin organization during cell constriction in Drosophila. Development. 134, 567-578 (2007).
  13. Martin, A. C., Kaschube, M., Wieschaus, E. F. Pulsed contractions of an actin-myosin network drive apical constriction. Nature. 457, 495-499 (2009).
  14. Bertet, C., Sulak, L., Lecuit, T. Myosin-dependent junction remodelling controls planar cell intercalation and axis elongation. Nature. 429, 667-671 (2004).
  15. Blankenship, J. T., Backovic, S. T., Sanny, J. S., Weitz, O., Zallen, J. A. Multicellular rosette formation links planar cell polarity to tissue morphogenesis. Dev Cell. 11, 459-470 (2006).
  16. Caussinus, E., Colombelli, J., Affolter, M. Tip-cell migration controls stalk-cell intercalation during Drosophila tracheal tube elongation. Curr Biol. 18, 1727-1734 (2008).
  17. Gervais, L., Casanova, J. In vivo coupling of cell elongation and lumen formation in a single cell. Curr Biol. 20, 359-366 (2010).
  18. Gorfinkiel, N., Blanchard, G. B., Adams, R. J., Arias, M. a. r. t. i. n. e. z., A, . Mechanical control of global cell behaviour during dorsal closure in Drosophila. Development. 136, 1889-1898 (2009).
  19. Solon, J., Kaya-Copur, A., Colombelli, J., Brunner, D. Pulsed forces timed by a ratchet-like mechanism drive directed tissue movement during dorsal closure. Cell. 137, 1331-1342 (2009).
  20. Bownes, M. A photographic study of development in the living embryo of Drosophila melanogaster. J Embryol Exp Morphol. 33, 789-801 (1975).
  21. Sokac, A. M., Wieschaus, E. Zygotically controlled F-actin establishes cortical compartments to stabilize furrows during Drosophila cellularization. J Cell Sci. 121, 1815-1824 (2008).
  22. Morin, X., Daneman, R., Zavortink, M., Chia, W. A protein trap strategy to detect GFP-tagged proteins expressed from their endogenous loci in Drosophila. Proc Natl Acad Sci U S A. 98, 15050-15055 (2001).
  23. Oda, H., Tsukita, S. Real-time imaging of cell-cell adherens junctions reveals that Drosophila mesoderm invagination begins with two phases of apical constriction of cells. J Cell Sci. 114, 493-501 (2001).
  24. Kiehart, D. P., Galbraith, C. G., Edwards, K. A., Rickoll, W. L., Montague, R. A. Multiple forces contribute to cell sheet morphogenesis for dorsal closure in Drosophila. J Cell Biol. 149, 471-490 (2000).
check_url/2503?article_type=t

Play Video

Cite This Article
Figard, L., Sokac, A. M. Imaging Cell Shape Change in Living Drosophila Embryos. J. Vis. Exp. (49), e2503, doi:10.3791/2503 (2011).

View Video