Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove

Medicine

Magnetic Resonance Imaging Quantification of Pulmonary Perfusion using Calibrated Arterial Spin Labeling

Published: May 30, 2011 doi: 10.3791/2712

Summary

A MR imaging method to study the distribution of pulmonary blood flow under a variety of physiological conditions, in this case exposure to three different inspired oxygen concentrations: hypoxia, normoxia, and hyperoxia, is described. This technique utilizes human pulmonary physiology research techniques in an MR scanning environment.

Abstract

This demonstrates a MR imaging method to measure the spatial distribution of pulmonary blood flow in healthy subjects during normoxia (inspired O2, fraction (FIO2) = 0.21) hypoxia (FIO2 = 0.125), and hyperoxia (FIO2 = 1.00). In addition, the physiological responses of the subject are monitored in the MR scan environment. MR images were obtained on a 1.5 T GE MRI scanner during a breath hold from a sagittal slice in the right lung at functional residual capacity. An arterial spin labeling sequence (ASL-FAIRER) was used to measure the spatial distribution of pulmonary blood flow 1,2 and a multi-echo fast gradient echo (mGRE) sequence 3 was used to quantify the regional proton (i.e. H2O) density, allowing the quantification of density-normalized perfusion for each voxel (milliliters blood per minute per gram lung tissue).

With a pneumatic switching valve and facemask equipped with a 2-way non-rebreathing valve, different oxygen concentrations were introduced to the subject in the MR scanner through the inspired gas tubing. A metabolic cart collected expiratory gas via expiratory tubing. Mixed expiratory O2 and CO2 concentrations, oxygen consumption, carbon dioxide production, respiratory exchange ratio, respiratory frequency and tidal volume were measured. Heart rate and oxygen saturation were monitored using pulse-oximetry. Data obtained from a normal subject showed that, as expected, heart rate was higher in hypoxia (60 bpm) than during normoxia (51) or hyperoxia (50) and the arterial oxygen saturation (SpO2) was reduced during hypoxia to 86%. Mean ventilation was 8.31 L/min BTPS during hypoxia, 7.04 L/min during normoxia, and 6.64 L/min during hyperoxia. Tidal volume was 0.76 L during hypoxia, 0.69 L during normoxia, and 0.67 L during hyperoxia.

Representative quantified ASL data showed that the mean density normalized perfusion was 8.86 ml/min/g during hypoxia, 8.26 ml/min/g during normoxia and 8.46 ml/min/g during hyperoxia, respectively. In this subject, the relative dispersion4, an index of global heterogeneity, was increased in hypoxia (1.07 during hypoxia, 0.85 during normoxia, and 0.87 during hyperoxia) while the fractal dimension (Ds), another index of heterogeneity reflecting vascular branching structure, was unchanged (1.24 during hypoxia, 1.26 during normoxia, and 1.26 during hyperoxia).

Overview. This protocol will demonstrate the acquisition of data to measure the distribution of pulmonary perfusion noninvasively under conditions of normoxia, hypoxia, and hyperoxia using a magnetic resonance imaging technique known as arterial spin labeling (ASL).

Rationale: Measurement of pulmonary blood flow and lung proton density using MR technique offers high spatial resolution images which can be quantified and the ability to perform repeated measurements under several different physiological conditions. In human studies, PET, SPECT, and CT are commonly used as the alternative techniques. However, these techniques involve exposure to ionizing radiation, and thus are not suitable for repeated measurements in human subjects.

Protocol

1. Subject recruitment

  1. Subject population
    1. Subjects are recruited by advertisement to fit the specific demographics required for the study.
    2. The subject for this particular study is a healthy, nonsmoker between the ages of 19 - 45, with no history of heart or lung disease.
  2. Informed consent
    1. This study is approved by the University of California, San Diego, Human Research Protections Program.
    2. The subject is informed of the potential risks of this study, e. g. magnetic field exposure (MRI) and of breathing hypoxic and hyperoxic gas.
      If the subject is female and capable of childbearing, a urine sample is collected before the onset of the study in order to rule out pregnancy. Although exposure to magnetic fields is extremely unlikely to be harmful to a developing fetus, the exact potential risk is unknown. In addition hypoxia might present a risk to the fetus. For these reasons pregnant women are excluded from the study.
  3. MR safety screening
    All our subjects must complete a questionnaire about items that would contraindicate a magnetic resonance examination. If a contraindication is found, the subject is excluded from the study.

2. Preparation

  1. Physical examination
    1. The subject is interviewed regarding their physical health and habits, and receives a brief physical examination by a licensed physician.
    2. The subject's height and weight are also measured. These values are used to estimate the predicted values of pulmonary function test and the specific absorption rate (SAR). The estimation of SAR is important because there is the potential for heating of the subject's tissue from the radio frequency (RF) energy necessary to produce the MR images.
  2. Pulmonary function test
    Lung volumes are measured using spirometry in the upright posture. The subject performs pulmonary function testing by blowing into a handheld spirometer (EasyOne Spirometer, Medical Technologies Andover). A nose clip is used to ensure all air is expelled out of the mouth. Spirometry data are acquired in triplicate to ensure reliable data. The quality of the pulmonary function test must meet the American Thoracic Society / European Respiratory Society criteria5.

3. Undergoing the magnetic resonance study

  1. Training session to produce a reliable functional residual capacity (FRC) lung volume during breath holding.
    Our lung images are acquired when the lung is at FRC. This is an easily attainable lung volume, and enhances signal to noise in the image, by increasing the proton density. Our subjects are trained to comfortably reproduce this lung volume. If the subject is a first-time participant in one of our studies, this training session is completed before the subject enters the MR scanner. Since the scanner makes sounds during acquisition, a sound recording of the image acquisition is played for the subject, and the subject is coached while they practice synchronizing their breathing with the sound recording.
  2. Breathing setup
    1. The inspiratory setup
      The inspiratory tube is connected to the Mylar gas bags, which will hold either hyperoxic and hypoxic gases, or normoxic air, and are administered via a switching valve (Single-Piston Sliding-Type™ valve and controller 4285A, Hans Rudolph). The valve is checked for normal functioning.
      The gas bags, which administer the inspired gases to the subject, are in the scanner room and are connected to gas tanks of different oxygen concentrations in the MR console room. Gas is added to the bag by the investigator through manipulation of the gas tank regulators.
      The investigator must monitor the bag through the console room window to ensure the gas volume is sufficient, in order to ensure that the subject has enough gas to inspire normally. The FIO2 of hyperoxic and hypoxic gases are 1.0 and 0.125, respectively. Room air is used for the normoxic gas.
    2. The expiratory setup
      The expiratory breathing tube is sufficiently long to connect from the subject in the MR scanner through a pass-through to the metabolic cart (TrueOne 2400, ParvoMedics) in the MR console room.
      The metabolic cart measures the volume of expired air as well as mixed expiratory O2 and CO2 concentrations. Based on these parameters, it also calculates various respiratory volumes, such as tidal volume, oxygen consumption (V. O2), carbon dioxide production (V. CO2), and respiratory quotient.
      It is necessary to calibrate the O2 and CO2 sensors and flow meter before every study. An investigator calibrates the metabolic cart system by following the built-in instructions in accordance with the metabolic cart operating software. O2 and CO2 sensors are adjusted by two points calibration between the calibration gas (FO2 = 0.16 and FCO2 = 0.04) and room air (FO2 = 0.2098 and FCO2 = 0.00). The flow meter is calibrated by using a standardized 3-liter syringe. The investigator pumps 3-liter volumes of air (at room temperature and barometric pressure) into the metabolic cart through the expiratory breathing tube equipped with a Hans Rudolph 2-way non-rebreathing valve which is identical to the one that is attached to the subject’s mask. In order to allow for the various flow rates of breathing, this calibration is performed at least five times with peak flows ranging from 50 L/min ATPS to 80 L/min for resting measurements. The volume in the tubing and mouthpiece is calculated and when combined with the subjects respiratory data this allows for correction of the delay time caused by the length of expiratory tubing.
    3. Mask
      A cold-sterilized silicone mask (7400 series Oro-Nasal Mask, Hans Rudolph) is fitted to the subject to allow delivery of different gas mixtures and acquisition of metabolic and ventilatory data throughout the imaging session (size: petite, small, medium, large and extra large). A majority of adult subjects are fitted with small, medium or large masks.
      The mask equipped with a pre-sterilized non-rebreathing valve (Two-way non-rebreathing valve T-Shape™ configuration, 2600 Medium, 2700 Large, Hans Rudolph) is fixed on the subject’s face with a mesh attachment and checked for leaks. Then, inspiratory and expiratory tubes are attached.
  3. MR setup
    1. The subject lies supine, with feet towards the scanner bore on a sliding table that moves into the magnetic resonance scanner.
    2. Pillows and foam pads are used to maximize the subject’s comfort. A pulse oximeter (7500 FO, Nonin) is placed on the subject’s finger to monitor oxygen saturation and heart rate, which is especially important when the subject is exposed to hypoxia.
    3. An EKG electrode pad is placed on the subject’s chest. This allows the arterial spin labeling (ASL) MR sequence to be gated to the QRS complex.
    4. Once the subject is wearing a mask they cannot easily communicate with the study personnel. A squeeze ball is positioned in the subject’s hand, and taped in place. This allows for the subject to alert the investigators at any time that they need assistance.
    5. Earplugs are given to the subject to protect them from the noise produced by the scanner.
    6. Three MR phantoms are placed on the subject’s chest. The phantoms are used to quantify the MR signal during the post processing and have previously been characterized.
    7. The torso coil is also placed over the phantoms on the subject’s chest. The torso coil is used to increase the signal to noise ratio of MR image compared with the body coil by reducing the physical distance between the receiver and the subject. Finally, the subject is covered with a blanket to ensure their comfort.

4. MR scanning

  1. Before scanning
    1. The subject is asked to lie feet first on the MRI scan table. Then the scan table moves the subject into the center of the MRI scanner bore.
    2. The scanner operator frequently talks to the subject in order to make sure that the subject is comfortable and to remind them to squeeze the squeeze ball if they need assistance.
    3. Investigators monitor the EKG, O2 saturation, tidal volume, V. O2 and V. CO2. The first few minutes of monitoring are especially important to ensuring good quality data; if these numbers are not in the expected range, the calibration must be repeated and the facemask and tubing checked for leaks.
  2. Imaging exam sequences
    1. The localizer sequence is acquired first to obtain the anatomical images to determine placement of the imaging slice within the torso.
    2. An slice is selected in the sagittal plane from the portion of the right lung where the anterior – posterior distance is the largest. The slice thickness is typically 15 mm and a field of view is 40 cm x 40 cm.
  3. Arterial spin labeling
    Arterial spin labeling - flow-sensitive alternating inversion recovery with an extra RF pulse sequence (ASL- FAIRER) with a half-Fourier acquisition single-shot turbo spin-echo (HASTE) imaging scheme is used to obtain the regional perfusion data 1,2.
    1. The subject will hear a series of sound pairs, “bang-bang” indicating the magnetic tag and the image acquisition. The first banging sound is shorter than the second. This difference in the sound is noticeable. In between these sound pairs, the subject must complete one breathing cycle: breath-in and breath-out, prior to the next pair. During the pairs of sounds, the subject must breathhold at FRC.
    2. The subject is given a test run of image acquisitions during which time the subjects practices the breathing that they were familiarized with before they were put into the scanner (described above).
    3. The MR operator evaluates the quality of lung images based on the movement of the diaphragm. If the movement is minimal the ASL measurements start. The investigators monitor the tidal volume. The approximate target tidal volume is 500-700 ml consistent with normal ventilation with additional deadspace from the valve.
    4. The basic principle to quantify the pulmonary perfusion is described in reference 1 and 2 in detail. In this MR sequence, two different cardiac-gated images are acquired with a 5 second interval in between them. The image timing between the tag and the image acquisition (i.e. between the first bang sound and second bang sound) is set to 80% of the R-R interval to allow for the collection of one systolic ejection of blood. The signal from the blood is prepared in two different ways. In one image, the longitudinal magnetization of both blood and tissue inside and outside of the image slice is inverted, resulting in very low signal from both blood and tissue. In the second image, the inversion is applied only to the imaged slice, with the result that the inflow of blood from outside the image slice into the slice has a strong MR signal. When the two images are subtracted, thereby canceling out the stationary signal, the result is a quantitative map of blood delivered to the image slice within one systolic ejection period. The resolution is 256 x 128 pixels; therefore, the voxel size is ˜1.5 x ˜3.1x 15 mm (˜0.07 cm3).
  4. Lung proton density
    In addition to the ASL images, we also use a multi-echo fast gradient echo (mGRE) sequence to measure lung proton density 3. This allows the perfusion measurements to be expressed in mL/min/g and accounts for lung tissue deformation inside the thorax6. This sequence is run twice, one for the torso coil and one for the body coil.
    1. During this proton density image acquisition, the subject will hear a continuous noise that will last for approximately 10 seconds. During this, the subject must hold their breath and stay at FRC.
      The basic principle to quantify the lung proton density is described in reference 3. The resolution is 64 x 64 pixels; therefore, the voxel size is ˜6.3 x ˜6.3 x 15 mm (˜0.59 cm3).
  5. Switching inspiratory gases
    1. In this study gases with FIO2 = 0.21 (normoxia/room air), FIO2 = 0.125 (hypoxia), and FIO2 = 1.00 (hyperoxia) are presented in balanced order between subjects, although these can be varied as desired, consistent with the research goals
    2. After a subject reaches steady state for a specified condition (˜20 minutes for a particular gas) 7, MR measurements of perfusion and proton density are acquired. In this case, the 20 minute period of exposure to the gas before imaging is chosen because although the initiation of hypoxic pulmonary vasoconstriction response occurs within seconds, the response to alveolar hypoxia is not maximal until ˜20 minutes 8, consistent with the goal of this particular study.

5. Post processing

Post processing is completed using custom developed software within the MATLAB programming environment.

  1. Coil inhomogeneity correction
    By using the paired mGRE images from the homogeneous body coil and the inhomogeneous torso coil (section 4.1), all blood flow and proton density images are corrected for coil inhomogeneity on a subject-by subject basis 6. This method is described in reference 6 and 9.
  2. Density normalized perfusion
    1. Once the subtracted ASL image is corrected for coil inhomogeneity, the regional pulmonary blood flow is quantified in milliliters (blood) per minute per cubic centimeter (voxel).
    2. Density normalized perfusion expressed in units of milliliters (blood) per minute per gram of water is calculated by dividing the ASL image by the proton density image to give perfusion in milliliters per minute per gram of lung (tissue + blood).
    3. A mutual information based technique that includes translation and rotation is utilized to register the ASL and proton density images, and the ASL perfusion image is divided by the proton density image obtained with the torso coil on a voxel by voxel basis 6,9. This method is also described in reference 6 and 9.
  3. Data analysis
    For each image acquired as described above (lung proton density and density normalized perfusion), the data are analyzed in the following manner.
    1. For each image, mean density-normalized perfusion is calculated.
    2. Three different indexes of perfusion heterogeneity are calculated. These are 1) relative dispersion4,10,11, also known as the coefficient of variation, a global scale of heterogeneity defined as the ratio of the standard deviation to the mean perfusion in which the larger the relative dispersion, the more heterogeneous the perfusion distribution; 2) fractal dimension (Ds) 7, an index of the spatial heterogeneity that is scale independent, where the value varies between 1.0 (homogeneous) and 1.5 (spatially random); and 3) a geometric standard deviation, also global scales of heterogeneity but based on log normal model distribution 2.

6. Representative results

Physiological data are given in Table 1. Heart rate was increased in hypoxia and saturation was decreased. Ventilation was 8.31 L/min BTPS during hypoxia, 7.04 L/min during normoxia, and 6.64 L/min during hyperoxia. Tidal volume was 0.72 L during hypoxia, 0.69 L during normoxia, and 0.67 L during hyperoxia. The exposure to hypoxia increases both ventilation and tidal volume, while the hyperoxia decreases ventilation and tidal volume.

Three density normalized perfusion images collected during the three different inspired oxygen concentrations (Hypoxia: 0.125, Normoxia: 0.21, and Hyperoxia: 1.00) obtained from one subject (male, 30 years of age) are shown in Figure 1. The results of the data analysis of perfusion heterogeneity are given in Table 2. It can be seen that hypoxia increased the relative dispersion however the other indices were largely unchanged.

Figure 2 shows the effect of inspired oxygen concentrations on the vertical distribution of density normalized perfusion, averaged every 1 cm below 10 cm height from the most dependent part of lung and above 10 cm. All data points above 10 cm are averaged and displayed as one data point.

  Hypoxia Normoxia Hyperoxia
Heart Rate (bpm) 60 51 50
SpO2 86 99 100
VE BTPS (L/min) 8.31 7.04 6.64
Vt BTPS (L) 0.76 0.69 0.67
FEO2 (%) 8.85 17.27 -
FECO2 (%) 3.41 3.60 3.20
VO2 STPD (L/min) 0.25 0.22 -*
VCO2 STPD (L/min) 0.23 0.21 0.18

Table 1. The physiological data during scanning session.

* When the subject is breathing 100% oxygen, VO2 cannot be easily measured (see 12for details).

  Hypoxia Normoxia Hyperoxia
Relative Dispersion 1.07 0.85 0.87
Fractal Dimension 1.24 1.26 1.26
Geometric Standard Deviation 2.41 2.11 2.38

Table 2. The three indices of pulmonary perfusion heterogeneity.

Figure 1
Figure 1. Effect of three different inspired oxygen concentrations on density normalized perfusion. 1.1: Hypoxia (0.125), 1.2: Normoxia (0.21), 1.3: Hyperoxia (1.00). The scale is 3 cm (white solid line). A: anterior, P: posterior, I: inferior, and S: superior directions, respectively.

Figure 2
Figure 2. Effect of three different inspired oxygen concentrations on the vertical distribution of density normalized perfusion. The density normalized perfusion is averaged within 1 cm bins in the same gravitational plane, starting from 0 cm at the most dependent part of the lung and continuing to the most nondependent portion. All data points above 10 cm are averaged and displayed as one data point.

The error bars represent the standard deviation of the values of the density normalized perfusion within that plane. Hypoxic data are in red, normoxic data are in blue, and hyperoxic data are in green.

Subscription Required. Please recommend JoVE to your librarian.

Discussion

This method enables measurement of the effects of inspired oxygen concentration on the spatial distribution of pulmonary blood flow using basic physiological techniques in the MR scan environment. The use of physiological techniques in combination with quantitative proton imaging of the lung is relatively easily implemented.

To ensure a good quality test, the most important step is training the subject to breath-hold at the correct lung volume and in synchrony with the imaging sequence. Since both ASL and proton density images rely on the reproducibility of FRC lung volumes, any diaphragmatic or chest wall movement would lead to misregistration of those images. Well-trained subjects are able to reproduce the FRC lung volume repeatedly in the MR scanner Some subjects hyperventilate in the scanner and thus the investigator must also monitor the tidal volume measured by metabolic cart and offer feedback to the subject to ensure normal breathing. Finally oxygen saturation, particularly during hypoxic exposure must be monitored for subject safety.

Some of the limitations of these techniques are as follows: 1. we can only acquire perfusion data from one slice per breathhold. However our sequence allows for continuous acquisition in between breaths, and thus by using repeated breathholds the entire lung can be imaged in less than 3 minutes. 2. Quantification is dependent on accurate characterization of reference phantoms, and any error in this will be directly reflected in the data. 3. Since the physiological monitoring equipment that we use is located outside of the scanner room, we are unable to make breath-by breath measurements of VO2 and VCO2. 4. Some subjects, particularly young children or elderly patients with lung disease may have difficulty in reproducing the breathing pattern necessary for imaging, although it has been our experience that the vast majority of subjects, including patients, quickly acquire these skills.

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

No conflicts of interest declared.

Acknowledgments

Supported by NIH HL081171, NIH HL080203

Materials

Name Company Catalog Number Comments
MRI GE Healthcare 1.5 T GE HDx EXICITE twinspeed scanner
Metabolic cart ParvoMedics TrueOne 2400
Pulse Oximeter Nonin 7500 FO
Spirometer Medical Technologies Andover EasyOne diagonostic Spirometer
Mask Hans Rudolph 7400 series Oro-Nasal Mask, Small, Medium, and Large
Valve Hans Rudolph Two-way non-rebreathing valves T-Shape configuration, 2600 Medium. 2700 Large
Head Set Hans Rudolph Head cap (Adult size), strap & Locking Clips.
Pneumatic directional control valve and controller Hans Rudolph Single Piston Sliding-Type valve and controller 4285A
Non-Diffusing gas collection bag Hans Rudolph 6100 (100 liters).
Tube VacuMed Clean-Bor Tubing 108”, 1-3/8” OD fittings
Phantoms Mentor Brest Implant Round, 250cc
matlab Mathworks

DOWNLOAD MATERIALS LIST

References

  1. Bolar, D. S. Quantification of regional pulmonary blood flow using ASL-FAIRER. Magn Reson Med. 55, 1308-1317 (2006).
  2. Henderson, A. C., Prisk, G. K., Levin, D. L., Hopkins, S. R., Buxton, R. B. Characterizing pulmonary blood flow distribution measured using arterial spin labeling. NMR Biomed. 22, 1025-1035 (2009).
  3. Theilmann, R. J. Quantitative MRI measurement of lung density must account for the change in T(2) (*) with lung inflation. J Magn Reson Imaging. 30, 527-534 (2009).
  4. Hopkins, S. R., Garg, J., Bolar, D. S., Balouch, J., Levin, D. L. Pulmonary blood flow heterogeneity during hypoxia and high-altitude pulmonary edema. Am J Respir Crit Care Med. 171, 83-87 (2005).
  5. Miller, M. R. Standardisation of spirometry. Eur Respir J. 26, 319-338 (2005).
  6. Hopkins, S. R. Vertical gradients in regional lung density and perfusion in the supine human lung: the Slinky effect. J Appl Physiol. 103, 240-248 (2007).
  7. Arai, T. J. Hypoxic pulmonary vasoconstriction does not contribute to pulmonary blood flow heterogeneity in normoxia in normal supine humans. J Appl Physiol. 106, 1057-1064 (2009).
  8. Dawson, C. A. Role of pulmonary vasomotion in physiology of the lung. Physiol Rev. 64, 544-616 (1984).
  9. Prisk, G. K. Pulmonary perfusion in the prone and supine postures in the normal human lung. J Appl Physiol. 103, 883-894 (2007).
  10. Henderson, A. C. Steep head-down tilt has persisting effects on the distribution of pulmonary blood flow. J Appl Physiol. 101, 583-589 (2006).
  11. Levin, D. L. Effects of age on pulmonary perfusion heterogeneity measured by magnetic resonance imaging. J Appl Physiol. 102, 2064-2070 (2007).
  12. Wasserman, K. H., Sue, D., Casaburi, R., Whipp, B. Calculations, Fomulae, and Examples (Appendix C). Principles of Exercise Testing and Interpretation. , Lippincott Williams & Wilkins. Baltimore. (1999).

Tags

Magnetic Resonance Imaging Pulmonary Perfusion Calibrated Arterial Spin Labeling MR Imaging Method Spatial Distribution Pulmonary Blood Flow Healthy Subjects Normoxia Hypoxia Hyperoxia Physiological Responses MR Scan Environment Sagittal Slice Right Lung Functional Residual Capacity Arterial Spin Labeling Sequence Multi-echo Fast Gradient Echo Sequence Density-normalized Perfusion Voxel Pneumatic Switching Valve Facemask Non-rebreathing Valve Oxygen Concentrations Inspired Gas Tubing Metabolic Cart Expiratory Gas Oxygen Consumption Carbon Dioxide Production Respiratory Exchange Ratio Respiratory Frequency Tidal Volume Heart Rate Oxygen Saturation
Magnetic Resonance Imaging Quantification of Pulmonary Perfusion using Calibrated Arterial Spin Labeling
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Arai, T. J., Prisk, G. K., Holverda, More

Arai, T. J., Prisk, G. K., Holverda, S., Sá, R. C., Theilmann, R. J., Henderson, A. C., Cronin, M. V., Buxton, R. B., Hopkins, S. R. Magnetic Resonance Imaging Quantification of Pulmonary Perfusion using Calibrated Arterial Spin Labeling. J. Vis. Exp. (51), e2712, doi:10.3791/2712 (2011).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

PLAYLIST

  • Research • Medicine
    Estimation of Urinary Nanocrystals in Humans using Calcium Fluorophore Labeling and Nanoparticle Tracking Analysis
  • Research • Medicine
    Development and Evaluation of 3D-Printed Cardiovascular Phantoms for Interventional Planning and Training
  • Research • Medicine
    Human Fetal Blood Flow Quantification with Magnetic Resonance Imaging and Motion Compensation
  • Research • Medicine
    Digital Handwriting Analysis of Characters in Chinese Patients with Mild Cognitive Impairment
  • Research • Medicine
    Segmentation and Linear Measurement for Body Composition Analysis using Slice-O-Matic and Horos
  • Research • Medicine
    Magnetic Resonance Imaging of Multiple Sclerosis at 7.0 Tesla
  • Research • Medicine
    Real-Time Magnetic Resonance Guided Focused Ultrasound for Painful Bone Metastases
  • Research • Medicine
    Isolation of Viable Adipocytes and Stromal Vascular Fraction from Human Visceral Adipose Tissue Suitable for RNA Analysis and Macrophage Phenotyping
  • Research • Medicine
    Obtaining Quality Extended Field-of-View Ultrasound Images of Skeletal Muscle to Measure Muscle Fascicle Length
  • Research • Medicine
    Lung CT Segmentation to Identify Consolidations and Ground Glass Areas for Quantitative Assesment of SARS-CoV Pneumonia
  • Research • Medicine
    Electroretinogram Recording for Infants and Children under Anesthesia to Achieve Optimal Dark Adaptation and International Standards
  • Research • Medicine
    Measurement of Tissue Oxygenation Using Near-Infrared Spectroscopy in Patients Undergoing Hemodialysis
  • Research • Medicine
    Evaluation of Capnography Sampling Line Compatibility and Accuracy when Used with a Portable Capnography Monitor
  • Research • Medicine
    Simultaneous Laryngopharyngeal and Conventional Esophageal pH Monitoring
  • Research • Medicine
    Real-Time Monitoring of Neurocritical Patients with Diffuse Optical Spectroscopies
  • Research • Neuroscience
    Evaluating Postural Control and Lower-extremity Muscle Activation in Individuals with Chronic Ankle Instability
  • Research • Medicine
    Assessment of Dependence in Activities of Daily Living Among Older Patients in an Acute Care Unit
  • Research • Medicine
    Validated LC-MS/MS Panel for Quantifying 11 Drug-Resistant TB Medications in Small Hair Samples
  • Research • Medicine
    International Expert Consensus and Recommendations for Neonatal Pneumothorax Ultrasound Diagnosis and Ultrasound-guided Thoracentesis Procedure
  • Research • Biology
    A Finite Element Approach for Locating the Center of Resistance of Maxillary Teeth
  • Research • Medicine
    Lower Limb Biomechanical Analysis of Healthy Participants
  • Research • Neuroscience
    Assessing Early Stage Open-Angle Glaucoma in Patients by Isolated-Check Visual Evoked Potential
  • Research • Medicine
    Oral Health Assessment by Lay Personnel for Older Adults
  • Research • Medicine
    Determining and Controlling External Power Output During Regular Handrim Wheelchair Propulsion
  • Research • Medicine
    A Whole Body Dosimetry Protocol for Peptide-Receptor Radionuclide Therapy (PRRT): 2D Planar Image and Hybrid 2D+3D SPECT/CT Image Methods
  • Research • Medicine
    Measurement of Carotenoids in Perifovea using the Macular Pigment Reflectometer
  • Research • Medicine
    Assessment of Static Graviceptive Perception in the Roll-Plane using the Subjective Visual Vertical Paradigm
  • Research • Medicine
    Learning Modern Laryngeal Surgery in a Dissection Laboratory
  • Research • Medicine
    DIPLOMA Approach for Standardized Pathology Assessment of Distal Pancreatectomy Specimens
  • Research • Medicine
    A Computerized Functional Skills Assessment and Training Program Targeting Technology Based Everyday Functional Skills
  • Research • Medicine
    Imaging Features of Systemic Sclerosis-Associated Interstitial Lung Disease
  • Research • Medicine
    Integrating Augmented Reality Tools in Breast Cancer Related Lymphedema Prognostication and Diagnosis
  • Research • Medicine
    Ultrasonographic Assessment During Cardiopulmonary Resuscitation
  • Research • Medicine
    Measurement of the Hepatic Venous Pressure Gradient and Transjugular Liver Biopsy
  • Research • Medicine
    Patient Directed Recording of a Bipolar Three-Lead Electrocardiogram using a Smartwatch with ECG Function
  • Research • Medicine
    Traditional Trail Making Test Modified into Brand-new Assessment Tools: Digital and Walking Trail Making Test
  • Research • Medicine
    Use of Magnetic Resonance Imaging and Biopsy Data to Guide Sampling Procedures for Prostate Cancer Biobanking
  • Research • Medicine
    A Fluorescence-based Assay for Characterization and Quantification of Lipid Droplet Formation in Human Intestinal Organoids
  • Research • Medicine
    A Novel Non-invasive Method for the Detection of Elevated Intra-compartmental Pressures of the Leg
  • Research • Medicine
    Quantitative Mapping of Specific Ventilation in the Human Lung using Proton Magnetic Resonance Imaging and Oxygen as a Contrast Agent
  • Research • Neuroscience
    Portable Thermographic Screening for Detection of Acute Wallenberg's Syndrome
  • Research • Medicine
    Use of MRI-ultrasound Fusion to Achieve Targeted Prostate Biopsy
  • Research • Medicine
    Testing of all Six Semicircular Canals with Video Head Impulse Test Systems
  • Research • Medicine
    Protocol and Guidelines for Point-of-Care Lung Ultrasound in Diagnosing Neonatal Pulmonary Diseases Based on International Expert Consensus
  • Research • Neuroscience
    Bilateral Assessment of the Corticospinal Pathways of the Ankle Muscles Using Navigated Transcranial Magnetic Stimulation
  • Research • Medicine
    Targeting Gray Rami Communicantes in Selective Chemical Lumbar Sympathectomy
  • Research • Medicine
    Multi-Modal Home Sleep Monitoring in Older Adults
  • Research • Medicine
    Cardiac Magnetic Resonance for the Evaluation of Suspected Cardiac Thrombus: Conventional and Emerging Techniques
  • Research • Medicine
    Observational Study Protocol for Repeated Clinical Examination and Critical Care Ultrasonography Within the Simple Intensive Care Studies
  • Research • Medicine
    Measurements of Motor Function and Other Clinical Outcome Parameters in Ambulant Children with Duchenne Muscular Dystrophy
  • Research • Medicine
    Assessment of the Efficacy of An Osteopathic Treatment in Infants with Biomechanical Impairments to Suckling
  • Research • Medicine
    Quantification of Levator Ani Hiatus Enlargement by Magnetic Resonance Imaging in Males and Females with Pelvic Organ Prolapse
  • Research • Medicine
    Quantitative [18F]-Naf-PET-MRI Analysis for the Evaluation of Dynamic Bone Turnover in a Patient with Facetogenic Low Back Pain
  • Research • Medicine
    Generation of Human 3D Lung Tissue Cultures (3D-LTCs) for Disease Modeling
  • Research • Medicine
    Proton Therapy Delivery and Its Clinical Application in Select Solid Tumor Malignancies
  • Research • Medicine
    Combining Volumetric Capnography And Barometric Plethysmography To Measure The Lung Structure-function Relationship
  • Research • Medicine
    Two-Dimensional X-Ray Angiography to Examine Fine Vascular Structure Using a Silicone Rubber Injection Compound
  • Research • Medicine
    Preparation, Procedures and Evaluation of Platelet-Rich Plasma Injection in the Treatment of Knee Osteoarthritis
  • Research • Medicine
    Cardiac Magnetic Resonance Imaging at 7 Tesla
  • Research • Medicine
    Semi-quantitative Assessment Using [18F]FDG Tracer in Patients with Severe Brain Injury
  • Research • Medicine
    Handheld Metal Detector Screening for Metallic Foreign Body Ingestion in Children
  • Research • Medicine
    Conducting Maximal and Submaximal Endurance Exercise Testing to Measure Physiological and Biological Responses to Acute Exercise in Humans
  • Research • Medicine
    A Metadata Extraction Approach for Clinical Case Reports to Enable Advanced Understanding of Biomedical Concepts
  • Research • Medicine
    Autonomic Function Following Concussion in Youth Athletes: An Exploration of Heart Rate Variability Using 24-hour Recording Methodology
  • Research • Medicine
    Hydra, a Computer-Based Platform for Aiding Clinicians in Cardiovascular Analysis and Diagnosis
  • Research • Medicine
    Objective Nociceptive Assessment in Ventilated ICU Patients: A Feasibility Study Using Pupillometry and the Nociceptive Flexion Reflex
  • Research • Medicine
    'Boden Food Plate': Novel Interactive Web-based Method for the Assessment of Dietary Intake
  • Research • Medicine
    Anogenital Distance and Perineal Measurements of the Pelvic Organ Prolapse (POP) Quantification System
  • Research • Medicine
    Bedside Ultrasound for Guiding Fluid Removal in Patients with Pulmonary Edema: The Reverse-FALLS Protocol
  • Research • Medicine
    Muscle Imbalances: Testing and Training Functional Eccentric Hamstring Strength in Athletic Populations
  • Research • Medicine
    Isolation of Primary Human Decidual Cells from the Fetal Membranes of Term Placentae
  • Research • Medicine
    Skeletal Muscle Neurovascular Coupling, Oxidative Capacity, and Microvascular Function with 'One Stop Shop' Near-infrared Spectroscopy
  • Research • Medicine
    Collecting Hair Samples for Hair Cortisol Analysis in African Americans
  • Research • Medicine
    In Vivo Morphometric Analysis of Human Cranial Nerves Using Magnetic Resonance Imaging in Menière's Disease Ears and Normal Hearing Ears
  • Research • Medicine
    Measuring the Carotid to Femoral Pulse Wave Velocity (Cf-PWV) to Evaluate Arterial Stiffness
  • Research • Medicine
    Standardized Measurement of Nasal Membrane Transepithelial Potential Difference (NPD)
  • Research • Medicine
    Taste Exam: A Brief and Validated Test
  • Research • Medicine
    Absorption of Nasal and Bronchial Fluids: Precision Sampling of the Human Respiratory Mucosa and Laboratory Processing of Samples
  • Research • Medicine
    Methodology for Sputum Induction and Laboratory Processing
  • Research • Medicine
    Electrophysiological Measurement of Noxious-evoked Brain Activity in Neonates Using a Flat-tip Probe Coupled to Electroencephalography
  • Research • Medicine
    A Detailed Protocol for Physiological Parameters Acquisition and Analysis in Neurosurgical Critical Patients
  • Research • Medicine
    Oral Biofilm Sampling for Microbiome Analysis in Healthy Children
  • Research • Medicine
    Using Retinal Imaging to Study Dementia
  • Research • Medicine
    Application of an Amplitude-integrated EEG Monitor (Cerebral Function Monitor) to Neonates
  • Research • Medicine
    3D Ultrasound Imaging: Fast and Cost-effective Morphometry of Musculoskeletal Tissue
  • Research • Medicine
    The 4-vessel Sampling Approach to Integrative Studies of Human Placental Physiology In Vivo
  • Research • Medicine
    A Component-resolved Diagnostic Approach for a Study on Grass Pollen Allergens in Chinese Southerners with Allergic Rhinitis and/or Asthma
  • Research • Medicine
    A Novel Method: Super-selective Adrenal Venous Sampling
  • Research • Medicine
    A Method for Quantifying Upper Limb Performance in Daily Life Using Accelerometers
  • Research • Medicine
    Non-invasive Assessments of Subjective and Objective Recovery Characteristics Following an Exhaustive Jump Protocol
  • Research • Medicine
    Experimental Protocol of a Three-minute, All-out Arm Crank Exercise Test in Spinal-cord Injured and Able-bodied Individuals
  • Research • Medicine
    Phosphorus-31 Magnetic Resonance Spectroscopy: A Tool for Measuring In Vivo Mitochondrial Oxidative Phosphorylation Capacity in Human Skeletal Muscle
  • Research • Medicine
    Assessment of Pulmonary Capillary Blood Volume, Membrane Diffusing Capacity, and Intrapulmonary Arteriovenous Anastomoses During Exercise
  • Research • Medicine
    Assessment of Child Anthropometry in a Large Epidemiologic Study
  • Research • Medicine
    Video Movement Analysis Using Smartphones (ViMAS): A Pilot Study
  • Research • Medicine
    Network Analysis of Foramen Ovale Electrode Recordings in Drug-resistant Temporal Lobe Epilepsy Patients
  • Research • Medicine
    A Model to Simulate Clinically Relevant Hypoxia in Humans
  • Research • Medicine
    Interictal High Frequency Oscillations Detected with Simultaneous Magnetoencephalography and Electroencephalography as Biomarker of Pediatric Epilepsy
  • Research • Medicine
    Induction and Assessment of Exertional Skeletal Muscle Damage in Humans
  • Research • Medicine
    A Detailed Protocol for Perspiration Monitoring Using a Novel, Small, Wireless Device
  • Research • Medicine
    Drug-Induced Sleep Endoscopy (DISE) with Target Controlled Infusion (TCI) and Bispectral Analysis in Obstructive Sleep Apnea
  • Research • Medicine
    Integrated Compensatory Responses in a Human Model of Hemorrhage
  • Research • Medicine
    Transthoracic Speckle Tracking Echocardiography for the Quantitative Assessment of Left Ventricular Myocardial Deformation
  • Research • Medicine
    Impression Cytology of the Lid Wiper Area
  • Research • Behavior
    A Protocol of Manual Tests to Measure Sensation and Pain in Humans
  • Research • Medicine
    Unbiased Deep Sequencing of RNA Viruses from Clinical Samples
  • Research • Medicine
    A Choroid Plexus Epithelial Cell-based Model of the Human Blood-Cerebrospinal Fluid Barrier to Study Bacterial Infection from the Basolateral Side
  • Research • Medicine
    Isolation and Profiling of MicroRNA-containing Exosomes from Human Bile
  • Research • Medicine
    Generation of Microtumors Using 3D Human Biogel Culture System and Patient-derived Glioblastoma Cells for Kinomic Profiling and Drug Response Testing
  • Research • Medicine
    Ultrasound Assessment of Endothelial Function: A Technical Guideline of the Flow-mediated Dilation Test
  • Research • Medicine
    Using a Laminating Technique to Perform Confocal Microscopy of the Human Sclera
  • Research • Medicine
    Intravenous Endotoxin Challenge in Healthy Humans: An Experimental Platform to Investigate and Modulate Systemic Inflammation
  • Research • Medicine
    Modeling and Simulations of Olfactory Drug Delivery with Passive and Active Controls of Nasally Inhaled Pharmaceutical Aerosols
  • Research • Medicine
    Exosomal miRNA Analysis in Non-small Cell Lung Cancer (NSCLC) Patients' Plasma Through qPCR: A Feasible Liquid Biopsy Tool
  • Research • Medicine
    A Multimodal Imaging- and Stimulation-based Method of Evaluating Connectivity-related Brain Excitability in Patients with Epilepsy
  • Research • Medicine
    Measuring Cardiac Autonomic Nervous System (ANS) Activity in Toddlers - Resting and Developmental Challenges
  • Research • Medicine
    Using Saccadometry with Deep Brain Stimulation to Study Normal and Pathological Brain Function
  • Research • Medicine
    Quantitative Fundus Autofluorescence for the Evaluation of Retinal Diseases
  • Research • Medicine
    Diagnosis of Musculus Gastrocnemius Tightness - Key Factors for the Clinical Examination
  • Research • Medicine
    Stereo-Electro-Encephalo-Graphy (SEEG) With Robotic Assistance in the Presurgical Evaluation of Medical Refractory Epilepsy: A Technical Note
  • Research • Medicine
    Quantitative Magnetic Resonance Imaging of Skeletal Muscle Disease
  • Research • Medicine
    Transcutaneous Microcirculatory Imaging in Preterm Neonates
  • Research • Medicine
    Using an Ingestible Telemetric Temperature Pill to Assess Gastrointestinal Temperature During Exercise
  • Research • Medicine
    Design, Fabrication, and Administration of the Hand Active Sensation Test (HASTe)
  • Research • Medicine
    MRI-guided dmPFC-rTMS as a Treatment for Treatment-resistant Major Depressive Disorder
  • Research • Medicine
    Functional Human Liver Preservation and Recovery by Means of Subnormothermic Machine Perfusion
  • Research • Medicine
    A Multicenter MRI Protocol for the Evaluation and Quantification of Deep Vein Thrombosis
  • Research • Medicine
    Determining The Electromyographic Fatigue Threshold Following a Single Visit Exercise Test
  • Research • Medicine
    Use of Electromagnetic Navigational Transthoracic Needle Aspiration (E-TTNA) for Sampling of Lung Nodules
  • Research • Medicine
    Trabecular Meshwork Response to Pressure Elevation in the Living Human Eye
  • Research • Medicine
    In Vivo, Percutaneous, Needle Based, Optical Coherence Tomography of Renal Masses
  • Research • Medicine
    Establishment of Human Epithelial Enteroids and Colonoids from Whole Tissue and Biopsy
  • Research • Medicine
    Human Brown Adipose Tissue Depots Automatically Segmented by Positron Emission Tomography/Computed Tomography and Registered Magnetic Resonance Images
  • Research • Medicine
    Preparation and Respirometric Assessment of Mitochondria Isolated from Skeletal Muscle Tissue Obtained by Percutaneous Needle Biopsy
  • Research • Medicine
    A Methodological Approach to Non-invasive Assessments of Vascular Function and Morphology
  • Research • Medicine
    Isolation and Immortalization of Patient-derived Cell Lines from Muscle Biopsy for Disease Modeling
  • Research • Medicine
    State of the Art Cranial Ultrasound Imaging in Neonates
  • Research • Medicine
    Measurement of Dynamic Scapular Kinematics Using an Acromion Marker Cluster to Minimize Skin Movement Artifact
  • Research • Medicine
    The Supraclavicular Fossa Ultrasound View for Central Venous Catheter Placement and Catheter Change Over Guidewire
  • Research • Medicine
    Ultrasound Assessment of Endothelial-Dependent Flow-Mediated Vasodilation of the Brachial Artery in Clinical Research
  • Research • Medicine
    Tracking the Mammary Architectural Features and Detecting Breast Cancer with Magnetic Resonance Diffusion Tensor Imaging
  • Research • Medicine
    A Neuroscientific Approach to the Examination of Concussions in Student-Athletes
  • Research • Medicine
    DTI of the Visual Pathway - White Matter Tracts and Cerebral Lesions
  • Research • Medicine
    Collection, Isolation, and Flow Cytometric Analysis of Human Endocervical Samples
  • Research • Medicine
    Fundus Photography as a Convenient Tool to Study Microvascular Responses to Cardiovascular Disease Risk Factors in Epidemiological Studies
  • Research • Medicine
    A Multi-Modal Approach to Assessing Recovery in Youth Athletes Following Concussion
  • Research • Medicine
    Clinical Assessment of Spatiotemporal Gait Parameters in Patients and Older Adults
  • Research • Medicine
    Multi-electrode Array Recordings of Human Epileptic Postoperative Cortical Tissue
  • Research • Medicine
    Collection and Extraction of Saliva DNA for Next Generation Sequencing
  • Research • Medicine
    Fast and Accurate Exhaled Breath Ammonia Measurement
  • Research • Medicine
    Developing Neuroimaging Phenotypes of the Default Mode Network in PTSD: Integrating the Resting State, Working Memory, and Structural Connectivity
  • Research • Medicine
    Two Methods for Establishing Primary Human Endometrial Stromal Cells from Hysterectomy Specimens
  • Research • Medicine
    Assessment of Vascular Function in Patients With Chronic Kidney Disease
  • Research • Medicine
    Coordinate Mapping of Hyolaryngeal Mechanics in Swallowing
  • Research • Medicine
    Network Analysis of the Default Mode Network Using Functional Connectivity MRI in Temporal Lobe Epilepsy
  • Research • Medicine
    EEG Mu Rhythm in Typical and Atypical Development
  • Research • Medicine
    The Multiple Sclerosis Performance Test (MSPT): An iPad-Based Disability Assessment Tool
  • Research • Medicine
    Isolation and Functional Characterization of Human Ventricular Cardiomyocytes from Fresh Surgical Samples
  • Research • Medicine
    Dynamic Visual Tests to Identify and Quantify Visual Damage and Repair Following Demyelination in Optic Neuritis Patients
  • Research • Medicine
    Primary Culture of Human Vestibular Schwannomas
  • Research • Medicine
    Utility of Dissociated Intrinsic Hand Muscle Atrophy in the Diagnosis of Amyotrophic Lateral Sclerosis
  • Research • Medicine
    Lesion Explorer: A Video-guided, Standardized Protocol for Accurate and Reliable MRI-derived Volumetrics in Alzheimer's Disease and Normal Elderly
  • Research • Medicine
    Pulse Wave Velocity Testing in the Baltimore Longitudinal Study of Aging
  • Research • Medicine
    Isolation, Culture, and Imaging of Human Fetal Pancreatic Cell Clusters
  • Research • Medicine
    3D-Neuronavigation In Vivo Through a Patient's Brain During a Spontaneous Migraine Headache
  • Research • Medicine
    A Novel Application of Musculoskeletal Ultrasound Imaging
  • Research • Medicine
    Computerized Dynamic Posturography for Postural Control Assessment in Patients with Intermittent Claudication
  • Research • Medicine
    Collecting Saliva and Measuring Salivary Cortisol and Alpha-amylase in Frail Community Residing Older Adults via Family Caregivers
  • Research • Medicine
    Diffusion Tensor Magnetic Resonance Imaging in the Analysis of Neurodegenerative Diseases
  • Research • Medicine
    Transcriptomic Analysis of Human Retinal Surgical Specimens Using jouRNAl
  • Research • Medicine
    Improved Protocol For Laser Microdissection Of Human Pancreatic Islets From Surgical Specimens
  • Research • Medicine
    Evaluation of Respiratory Muscle Activation Using Respiratory Motor Control Assessment (RMCA) in Individuals with Chronic Spinal Cord Injury
  • Research • Medicine
    Minimal Erythema Dose (MED) Testing
  • Research • Medicine
    Measuring Cardiac Autonomic Nervous System (ANS) Activity in Children
  • Research • Medicine
    Collecting And Measuring Wound Exudate Biochemical Mediators In Surgical Wounds
  • Research • Medicine
    A Research Method For Detecting Transient Myocardial Ischemia In Patients With Suspected Acute Coronary Syndrome Using Continuous ST-segment Analysis
  • Research • Medicine
    Using a Chemical Biopsy for Graft Quality Assessment
  • Research • Medicine
    Characterizing Exon Skipping Efficiency in DMD Patient Samples in Clinical Trials of Antisense Oligonucleotides
  • Research • Medicine
    In Vitro Assessment of Cardiac Function Using Skinned Cardiomyocytes
  • Research • Medicine
    Normothermic Ex Situ Heart Perfusion in Working Mode: Assessment of Cardiac Function and Metabolism
  • Research • Medicine
    Evaluation of Vascular Control Mechanisms Utilizing Video Microscopy of Isolated Resistance Arteries of Rats
  • Research • Medicine
    Bronchoalveolar Lavage (BAL) for Research; Obtaining Adequate Sample Yield
  • Research • Medicine
    Non-invasive Optical Measurement of Cerebral Metabolism and Hemodynamics in Infants
  • Research • Medicine
    Tilt Testing with Combined Lower Body Negative Pressure: a "Gold Standard" for Measuring Orthostatic Tolerance
  • Research • Medicine
    Driving Simulation in the Clinic: Testing Visual Exploratory Behavior in Daily Life Activities in Patients with Visual Field Defects
  • Research • Medicine
    Isolation, Characterization and Comparative Differentiation of Human Dental Pulp Stem Cells Derived from Permanent Teeth by Using Two Different Methods
  • Research • Medicine
    Portable Intermodal Preferential Looking (IPL): Investigating Language Comprehension in Typically Developing Toddlers and Young Children with Autism
  • Research • Medicine
    Intraoperative Detection of Subtle Endometriosis: A Novel Paradigm for Detection and Treatment of Pelvic Pain Associated with the Loss of Peritoneal Integrity
  • Research • Medicine
    The Use of Primary Human Fibroblasts for Monitoring Mitochondrial Phenotypes in the Field of Parkinson's Disease
  • Research • Medicine
    Collection Protocol for Human Pancreas
  • Research • Medicine
    The α-test: Rapid Cell-free CD4 Enumeration Using Whole Saliva
  • Research • Medicine
    The Measurement and Treatment of Suppression in Amblyopia
  • Research • Medicine
    Corneal Donor Tissue Preparation for Endothelial Keratoplasty
  • Research • Medicine
    Quantification of Atherosclerotic Plaque Activity and Vascular Inflammation using [18-F] Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography (FDG-PET/CT)
  • Research • Medicine
    Eye Tracking Young Children with Autism
  • Research • Medicine
    Doppler Optical Coherence Tomography of Retinal Circulation
  • Research • Medicine
    Utilizing Transcranial Magnetic Stimulation to Study the Human Neuromuscular System
  • Research • Medicine
    Detection and Genogrouping of Noroviruses from Children's Stools By Taqman One-step RT-PCR
  • Research • Medicine
    Method to Measure Tone of Axial and Proximal Muscle
  • Research • Medicine
    The Trier Social Stress Test Protocol for Inducing Psychological Stress
  • Research • Medicine
    Probing the Brain in Autism Using fMRI and Diffusion Tensor Imaging
  • Research • Medicine
    Multifocal Electroretinograms
  • Research • Medicine
    Isolation of Human Islets from Partially Pancreatectomized Patients
  • Research • Medicine
    Examining the Characteristics of Episodic Memory using Event-related Potentials in Patients with Alzheimer's Disease
  • Research • Medicine
    Magnetic Resonance Imaging Quantification of Pulmonary Perfusion using Calibrated Arterial Spin Labeling
  • Research • Medicine
    Manual Muscle Testing: A Method of Measuring Extremity Muscle Strength Applied to Critically Ill Patients
  • Research • Medicine
    Expired CO2 Measurement in Intubated or Spontaneously Breathing Patients from the Emergency Department
  • Research • Medicine
    A Protocol for Comprehensive Assessment of Bulbar Dysfunction in Amyotrophic Lateral Sclerosis (ALS)
  • Research • Medicine
    An Investigation of the Effects of Sports-related Concussion in Youth Using Functional Magnetic Resonance Imaging and the Head Impact Telemetry System
  • Research • Medicine
    Corneal Confocal Microscopy: A Novel Non-invasive Technique to Quantify Small Fibre Pathology in Peripheral Neuropathies
  • Research • Medicine
    Methods to Quantify Pharmacologically Induced Alterations in Motor Function in Human Incomplete SCI
  • Research • Medicine
    Multispectral Real-time Fluorescence Imaging for Intraoperative Detection of the Sentinel Lymph Node in Gynecologic Oncology
  • Research • Medicine
    Technique to Collect Fungiform (Taste) Papillae from Human Tongue
  • Research • Medicine
    Assessing Endothelial Vasodilator Function with the Endo-PAT 2000
  • Research • Medicine
    Making Sense of Listening: The IMAP Test Battery
  • Research • Medicine
    An Experimental Paradigm for the Prediction of Post-Operative Pain (PPOP)
  • Research • Biology
    Bioelectric Analyses of an Osseointegrated Intelligent Implant Design System for Amputees
  • Research • Biology
    Demonstration of Cutaneous Allodynia in Association with Chronic Pelvic Pain
  • Get cutting-edge science videos from JoVE sent straight to your inbox every month.

    Waiting X
    Simple Hit Counter