Summary

Three-dimensional Optical-resolution Photoacoustic Microscopy

Published: May 03, 2011
doi:

Summary

Optical-resolution photoacoustic microscopy (OR-PAM) is an emerging technology capable of imaging optical absorption contrasts in vivo with cellular resolution and sensitivity. Here, we provide a visualized instruction on the experimental protocols of OR-PAM, including system configuration, system alignment, typical in vivo experimental procedures, and functional imaging schemes.

Abstract

Optical microscopy, providing valuable insights at the cellular and organelle levels, has been widely recognized as an enabling biomedical technology. As the mainstays of in vivo three-dimensional (3-D) optical microscopy, single-/multi-photon fluorescence microscopy and optical coherence tomography (OCT) have demonstrated their extraordinary sensitivities to fluorescence and optical scattering contrasts, respectively. However, the optical absorption contrast of biological tissues, which encodes essential physiological/pathological information, has not yet been assessable.

The emergence of biomedical photoacoustics has led to a new branch of optical microscopy optical-resolution photoacoustic microscopy (OR-PAM)1, where the optical irradiation is focused to the diffraction limit to achieve cellular1 or even subcellular2 level lateral resolution. As a valuable complement to existing optical microscopy technologies, OR-PAM brings in at least two novelties. First and most importantly, OR-PAM detects optical absorption contrasts with extraordinary sensitivity (i.e., 100%). Combining OR-PAM with fluorescence microscopy3 or with optical-scattering-based OCT4 (or with both) provides comprehensive optical properties of biological tissues. Second, OR-PAM encodes optical absorption into acoustic waves, in contrast to the pure optical processes in fluorescence microscopy and OCT, and provides background-free detection. The acoustic detection in OR-PAM mitigates the impacts of optical scattering on signal degradation and naturally eliminates possible interferences (i.e., crosstalks) between excitation and detection, which is a common problem in fluorescence microscopy due to the overlap between the excitation and fluorescence spectra.

Unique for optical absorption imaging, OR-PAM has demonstrated broad biomedical applications since its invention, including, but not limited to, neurology5, 6, ophthalmology7, 8, vascular biology9, and dermatology10. In this video, we teach the system configuration and alignment of OR-PAM as well as the experimental procedures for in vivo functional microvascular imaging.

Protocol

1. System configuration Optical irradiation Optical irradiation source: a diode-pumped solid-state pulsed laser (INNOSLAB, Edgewave) and a dye laser (CBR-D, Sirah). The output laser beam (pulse width: 7 ns) is focused by a condenser lens (LA1131, Thorlabs) to pass through a 50-μm pinhole (P50C, Thorlabs). The pinhole is positioned slightly away from the focus of the condenser lens to match the pinhole diameter with the fundamental-mode beam diameter for effective sp…

Discussion

In this video, we provide a detailed instruction on the experimental protocols of OR-PAM, including system configuration, system alignment, and typical experimental procedures. Label-free, noninvasive OR-PAM has enabled studies of microvascular functioning and metabolism on a single capillary basis and thereby holds the potential to expand our understanding of microcirculation-related physiology and pathology. Microphotoacoustics is currently manufacturing this OR-PAM system.

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors appreciate Dr. Lynnea Brumbaugh’s close reading of the manuscript. This work was sponsored by National Institutes of Health Grants R01 EB000712, R01 EB008085, R01 CA134539, U54 CA136398, and 5P60 DK02057933. Prof. Lihong V. Wang has a financial interest in Microphotoacoustics, Inc. and Endra, Inc., which, however, did not support this work.

Materials

Home-made acoustic-optical beam combiner:

  • right-angle prism (NT32-545, Edmund Optics)
  • rhomboid prism (NT49-419, Edmund Optics)
  • silicone oil (1000cSt, Clearco Products)
  • OR-PAM system (Microphotoacoustics)

References

  1. Maslov, K., Zhang, H. F., Hu, S., Wang, L. V. Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries. Opt. Lett. 33, 929-931 (2008).
  2. Zhang, C., Maslov, K., Wang, L. V. Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo. Opt. Lett. 35, 3195-3197 (2010).
  3. Wang, Y., Maslov, K., Kim, C., Hu, S., Wang, L. V. Integrated photoacoustic and fluorescence confocal microscopy. IEEE. Trans. Biomed. Eng. 57, 2576-2578 (2010).
  4. Jiao, S., Xie, Z., Zhang, H. F., Puliafito, C. A. Simultaneous multimodal imaging with integrated photoacoustic microscopy and optical coherence tomography. Opt. Lett. 34, 2961-2963 (2009).
  5. Hu, S., Maslov, K., Tsytsarev, V., Wang, L. V. Functional transcranial brain imaging by optical-resolution photoacoustic microscopy. J. Biomed. Opt. 14, 040503-040503 (2009).
  6. Hu, S., Yan, P., Maslov, K., Lee, J. M., Wang, L. V. Intravital imaging of amyloid plaques in a transgenic mouse model using optical-resolution photoacoustic microscopy. Opt. Lett. 34, 3899-3901 (2009).
  7. Hu, S., Rao, B., Maslov, K., Wang, L. V. Label-free Photoacoustic Ophthalmic Angiography. Opt. Lett. 35, 1-3 (2010).
  8. Jiao, S. L., Jiang, M. S., Hu, J. M., Fawzi, A., Zhou, Q. F., Shung, K. K., Puliafito, C. A., Zhang, H. F. Photoacoustic ophthalmoscopy for in vivo retinal imaging. Opt. Express. 18, 3967-3972 (2010).
  9. Oladipupo, S., Hu, S., Santeford, A., Yao, J., Kovalski, J. R., Shohet, R., Maslov, K., Wang, L. V., Arbeit, J. M. Conditional HIF-1 induction produces multistage neovascularization with stage-specific sensitivity to VEGFR inhibitors and myeloid cell independence. Blood. , .
  10. Hu, S., Maslov, K., Wang, L. V. In vivo functional chronic imaging of a small animal model using optical-resolution photoacoustic microscopy. Med. Phys. 36, 2320-2323 (2009).
  11. Hu, S., Maslov, K., Wang, L. V. Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed. Opt. Lett. 36, 1134-1136 (2011).
  12. Wang, X., Pang, Y., Ku, G., Xie, X., Stoica, G., Wang, L. V. Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat. Biotechnol. 21, 803-806 (2003).
  13. . . Laser Institute of America, American National Standard for Safe Use of Lasers ANSI Z136. , (2007).
  14. Jacques, S. L., Prahl, S. A. Optical Absorption of Hemoglobin . Oregon Medical Laser Center [Internet]. , (1999).
check_url/2729?article_type=t

Play Video

Cite This Article
Hu, S., Maslov, K., Wang, L. V. Three-dimensional Optical-resolution Photoacoustic Microscopy. J. Vis. Exp. (51), e2729, doi:10.3791/2729 (2011).

View Video