Summary

乳腺的发育和功能在小鼠模型的评价

Published: July 21, 2011
doi:

Summary

这种方法介绍如何剖析和评估小鼠乳腺发育和功能。切除乳腺评估使用全挂载的发展程度,而牛奶弹射使用催产素为基础的肌上皮细胞收缩测定评价。

Abstract

15-20叶组成的人体乳腺分泌乳汁,到乳头管系统开放的一个分支。这些叶是自己的终末导管小叶分泌肺泡和融合的管道1单位组成。在小鼠实验中,观察到类似的架构在怀孕管道和肺泡内的结缔组织基质中穿插。小鼠乳腺上皮细胞是像由两层细胞,管腔细胞基底膜2的范围表示的肌上皮细胞的外层包围的内层组成的导管系统树。出生时,只有残留的导管树目前,主风管和15-20分支机构组成。伸长率和放大分公司开始在青春期的开始,4周龄左右,3,4,5激素的影响下。在10个星期,大部分基质入侵的管道由一个复杂的系统,将发生在每个发情周期,直到怀孕 2分支和回归周期。在怀孕开始,开始第二阶段的发展,与上皮细胞的增殖和分化形成葡萄状的牛奶分泌结构称为肺泡 6,7的。整个分娩和哺乳,牛奶是生产管腔分泌细胞,并储存在肺泡腔内。催产素的释放,仔兔哺乳引起的神经反射刺激,诱导肺泡周围和沿导管的肌上皮细胞的同步收缩,让牛奶通过管道输送到乳头它成为可用的幼 8 。乳腺的发育,分化和功能的紧密配合和要求,不仅基质和上皮细胞之间的相互作用,而且之间的肌上皮细胞和管腔内的上皮细胞9,10,11。从而,在这些相互作用中有牵连的许多基因的突变可能会损害或者在妊娠晚期和分泌的激活 ,导致泌乳12,13在青春期或肺泡在怀孕早期,分化形成导管伸长。在这篇文章中,我们描述了如何解剖小鼠乳腺和评估他们的发展,使用整个坐骑。我们还演示了如何评价肌上皮收缩和牛奶弹射使用前体内催产素的功能测定。对乳腺的发育和功能的基因突变的影响,因此可以在原地决定执行这两种技术在突变体和野生型对照组小鼠。

Protocol

1。乳腺淋巴清扫术安乐死的鼠标使用CO 2吸入。如果可能,避免颈椎脱位,在颈部和乳腺周围的血液中积累的结果,因为它可能会损害大血管,使剥离更加困难。但是,如果其他条件,在相同的鼠标,如催产素的血药浓度,评估,替代安乐死方法可能是必要的,尽管这必须由您IACUC评估。 在铝箔包裹的聚苯乙烯泡沫塑料,在它的后面放置鼠标和蔓延四肢。引脚牢固四肢使用1…

Discussion

乳腺发育和功能的紧密协调。突变小鼠中可能隐藏的基因突变,会损害乳腺的发育和功能,突出了需要评估架构13,12。本文中描述的乳腺发育的各个阶段,整个安装可以执行。通常情况下,上皮细胞的发展是评估在青春期开始(〜4周龄),青春期(〜6周龄)中,进入青春期后(约10-12周龄)2,10 。在这几个阶段,管分支的数量,可确定的末端芽和管道的长度以量化程度的</sup…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这些研究是由CIHR CBCRA补助金,以DWL。知识产权是由CIHR – STP,FRSQ和CIHR奖学金资助。 MKGS是由OGS和CIHR – STP奖学金。作者感谢协助他用鼠标育种凯文巴尔。

Materials

Reagent Company Catalogue number
Carmine Sigma-Aldrich C1022
Aluminum potassium sulfate Sigma-Aldrich A6435
Thymol Sigma-Aldrich T0501
Methyl salicylate Sigma-Aldrich M6752
Oxytocin Sigma-Aldrich O3251

References

  1. Geddes, D. T. Inside the lactating breast: the latest anatomy research. J Midwifery Womens Health. 52, 556-556 (2007).
  2. Sternlicht, M. D. Key stages in mammary gland development: the cues that regulate ductal branching morphogenesis. Breast Cancer Res. 8, 201-201 (2006).
  3. Silberstein, G. B., Flanders, K. C., Roberts, A. B., Daniel, C. W. Regulation of mammary morphogenesis: evidence for extracellular matrix-mediated inhibition of ductal budding by transforming growth factor-beta 1. Dev Biol. 152, 354-354 (1992).
  4. Daniel, C. W., Robinson, S., Silberstein, G. B. The role of TGF-beta in patterning and growth of the mammary ductal tree. J Mammary Gland Biol Neoplasia. 1, 331-331 (1996).
  5. Neville, M. C., Daniel, C. W. . The Mammary gland : development, regulation, and function. , (1987).
  6. Oakes, S. R., Hilton, H. N., Ormandy, C. J. The alveolar switch: coordinating the proliferative cues and cell fate decisions that drive the formation of lobuloalveoli from ductal epithelium. Breast Cancer Res. 8, 207-207 (2006).
  7. Anderson, S. M., Rudolph, M. C., McManaman, J. L., Neville, M. C. Key stages in mammary gland development. Secretory activation in the mammary gland: it’s not just about milk protein synthesis!. Breast Cancer Res. 9, 204-204 (2007).
  8. Reversi, A., Cassoni, P., Chini, B. Oxytocin receptor signaling in myoepithelial and cancer cells. J Mammary Gland Biol Neoplasia. 10, 221-221 (2005).
  9. Haslam, S. Z. Cell to cell interactions and normal mammary gland function. J Dairy Sci. 71, 2843-2843 (1988).
  10. Plante, I., Laird, D. W. Decreased levels of connexin43 result in impaired development of the mammary gland in a mouse model of oculodentodigital dysplasia. Dev Biol. 318, 312-312 (2008).
  11. Talhouk, R. S. Heterocellular interaction enhances recruitment of alpha and beta-catenins and ZO-2 into functional gap-junction complexes and induces gap junction-dependant differentiation of mammary epithelial cells. Exp Cell Res. 314, 3275-3275 (2008).
  12. Palmer, C. A., Neville, M. C., Anderson, S. M., McManaman, J. L. Analysis of lactation defects in transgenic mice. J Mammary Gland Biol Neoplasia. 11, 269-269 (2006).
  13. Howlin, J., McBryan, J., Martin, F. Pubertal mammary gland development: insights from mouse models. J Mammary Gland Biol Neoplasia. 11, 283-283 (2006).
  14. You, L. Modulation of mammary gland development in prepubertal male rats exposed to genistein and methoxychlor. Toxicol Sci. 66, 216-216 (2002).
  15. Grill, C. J., Cohick, W. S., Sherman, A. R. Postpubertal development of the rat mammary gland is preserved during iron deficiency. J Nutr. 131, 1444-1444 (2001).
  16. Hennighausen, L., Robinson, G. W. Think globally, act locally: the making of a mouse mammary gland. Genes Dev. 12, 449-449 (1998).
  17. Aupperlee, . Strain-specific differences in the mechanisms of progesterone regulation of murine mammary gland development. Endocrinology. 150, 1485-1485 (2009).
  18. Montero Girard, G. Association of estrogen receptor-alpha and progesterone receptor A expression with hormonal mammary carcinogenesis: role of the host microenvironment. Breast Cancer Res. 9, R22-R22 (2007).
  19. Moore, D. M., Vogl, A. W., Baimbridge, K., Emerman, J. T. Effect of calcium on oxytocin-induced contraction of mammary gland myoepithelium as visualized by NBD-phallacidin. J Cell Sci. 88, 563-563 (1987).
check_url/2828?article_type=t

Play Video

Cite This Article
Plante, I., Stewart, M. K., Laird, D. W. Evaluation of Mammary Gland Development and Function in Mouse Models. J. Vis. Exp. (53), e2828, doi:10.3791/2828 (2011).

View Video