Summary

मानक प्रयोगशाला रिवर्स ट्रांसक्रिपटेस प्रतिक्रियाओं में mRNA की एकल कोशिका मात्रा से सीडीएनए पैदावार बढ़ाने ध्वनिक Microstreaming का उपयोग

Published: July 11, 2011
doi:

Summary

हम mRNA की एकल कोशिका मात्रा से अन्यथा मानक प्रयोगशाला रिवर्स प्रतिलेखन प्रतिक्रियाओं में सीडीएनए उपज बढ़ाने के लिए एक उपन्यास विधि का वर्णन. नवीनता micromixer, जो ध्वनिक microstreaming की घटना का इस्तेमाल का उपयोग में रहता है, मिलाते हुए, vortexing या trituration से microliter पैमाने पर तरल पदार्थ और अधिक प्रभावी ढंग से मिश्रण.

Abstract

Correlating gene expression with cell behavior is ideally done at the single-cell level. However, this is not easily achieved because the small amount of labile mRNA present in a single cell (1-5% of 1-50pg total RNA, or 0.01-2.5pg mRNA, per cell 1) mostly degrades before it can be reverse transcribed into a stable cDNA copy. For example, using standard laboratory reagents and hardware, only a small number of genes can be qualitatively assessed per cell 2. One way to increase the efficiency of standard laboratory reverse transcriptase (RT) reactions (i.e. standard reagents in microliter volumes) comprising single-cell amounts of mRNA would be to more rapidly mix the reagents so the mRNA can be converted to cDNA before it degrades. However this is not trivial because at microliter scales liquid flow is laminar, i.e. currently available methods of mixing (i.e. shaking, vortexing and trituration) fail to produce sufficient chaotic motion to effectively mix reagents. To solve this problem, micro-scale mixing techniques have to be used 3,4. A number of microfluidic-based mixing technologies have been developed which successfully increase RT reaction yields 5-8. However, microfluidics technologies require specialized hardware that is relatively expensive and not yet widely available. A cheaper, more convenient solution is desirable. The main objective of this study is to demonstrate how application of a novel “micromixing” technique to standard laboratory RT reactions comprising single-cell quantities of mRNA significantly increases their cDNA yields. We find cDNA yields increase by approximately 10-100-fold, which enables: (1) greater numbers of genes to be analyzed per cell; (2) more quantitative analysis of gene expression; and (3) better detection of low-abundance genes in single cells. The micromixing is based on acoustic microstreaming 9-12, a phenomenon where sound waves propagating around a small obstacle create a mean flow near the obstacle. We have developed an acoustic microstreaming-based device (“micromixer”) with a key simplification; acoustic microstreaming can be achieved at audio frequencies by ensuring the system has a liquid-air interface with a small radius of curvature 13. The meniscus of a microliter volume of solution in a tube provides an appropriately small radius of curvature. The use of audio frequencies means that the hardware can be inexpensive and versatile 13, and nucleic acids and other biochemical reagents are not damaged like they can be with standard laboratory sonicators.

Protocol

1. एक आरटी रिएक्शन Micromixing Micromixing के साथ एक आरटी प्रतिक्रिया प्रदर्शन से पहले, आरटी प्रतिक्रिया के वांछित तापमान को संतुलित micromixer. एक 37 के अंदर micromixer प्लेस डिग्री सेल्सियस (या आरटी आपूर्तिकर्ता द्वारा सि?…

Discussion

मानक प्रयोगशाला आरटी प्रतिक्रियाओं micromixing के आवेदन की विधि यहाँ वर्णित है, ज़ाहिर है, को शामिल कर सकते हैं किसी भी विधि (जैसे सेल lysis, लेजर कब्जा microdissection) के माध्यम से काटा mRNA. यह भी किसी भी ब्रांड या आरटी अभिकर्…

Disclosures

The authors have nothing to disclose.

Acknowledgements

यह अध्ययन राष्ट्रीय स्वास्थ्य और ऑस्ट्रेलिया के चिकित्सा अनुसंधान परिषद (परियोजना को कोई अनुदान 6,288,480) और Scobie और क्लेयर MacKinnon ट्रस्ट द्वारा समर्थित किया गया था.

Materials

Name of the reagent Company Catalogue number Comments (optional)
Total RNA was isolated from snap frozen acutely prepared adult mouse midbrain slices      
PicoPure RNA Isolation Kit Arcturus, CA, USA KIT0204 The kit is now available from Applied Biosystems
DNA-free DNase Treatment and Removal Reagents Ambion AM1906M  
Random hexamer primers Promega C1181  
AMV-RT Promega M5101  
dNTP set Promega U1240  
RNasin Ribonuclease Inhibitor Promega N2111  
Nuclease-Free Water Promega P1193  
SYBR Green PCR Master Mix Applied Biosystem 4309155  
Hprt forward (20mer):CTT TGC TGA CCT GCT GGA TT      
Hprt reverse (20mer):TAT GTC CCC CGT TGA CTG AT      
Nurr1 forward (23mer):CAG CTC CGA TTT CTT AAC TCC AG      
Nurr1 reverse (23mer):GGT GAG GTC CAT GCT AAA CTT GA      
NanoDrop 1000 Spectrophotometer. Thermo Scientific    
Corbett Rotor Gene RG-6000 Corbett Life Science   Corbett Life Science was acquired by QIAGEN in July 2008

References

  1. Livesey, F. J. Brief Funct Genomic Proteomic. 2 (1), 31-31 (2003).
  2. Aumann, T. D., Gantois, I., Egan, K. . Exp Neurol. 213 (2), 419-419 (2008).
  3. Ottino, J. M., Wiggins, S. . Philos Transact A Math Phys Eng Sci. 362 (1818), 923-923 (2004).
  4. Losey, M. W., Jackman, R. J., Firebaugh, S. L. . J Microelectromech. Syst. 11, 709-709 (2002).
  5. Bontoux, N., Dauphinot, L., Vitalis, T. . Lab Chip. 8 (3), 443-443 (2008).
  6. Marcus, J. S., Anderson, W. F., Quake, S. R. . Anal Chem. 78 (9), 3084-3084 (2006).
  7. Marcus, J. S., Anderson, W. F., Quake, S. R. . Anal Chem. 78 (3), 956-956 (2006).
  8. Warren, L., Bryder, D., Weissman, I. L. . Proc Natl Acad Sci U S A. 103 (47), 17807-17807 (2006).
  9. Jiao, Z. J., Huang, X. Y. . Microfluidics Nanofluidics. 6, 847-847 (2009).
  10. Ahmed, D., Xiaole, M., Juluri, B. K. . Microfluidics Nanofluidics. 7, 727-727 (2009).
  11. Paxton, W. F., O’Hara, M. J., Peper, S. M. . Anal Chem. 80, 4070-4070 (2008).
  12. Autom, L. a. b. . 11, 399-399 (2006).
  13. Petkovic-Duran, K., Manasseh, R., Zhu, Y. . 47 (4), 827-827 (2009).
  14. Boon, W. C., Petkovic-Duran, K., White, K. . 50 (2), 116-116 (2011).
  15. Liu, R. H., Lenigk, R., Druyor-Sanchez, R. L. . Anal Chem. 75 (8), 1911-1911 (1911).
  16. Riley, N. Ann Rev Fluid Mech. 33, 43-43 (2001).
  17. Whitehill, J., Neild, A., Ng, T. W. . Applied Physics Letters. 96 (5), 053501-053501 (2010).
check_url/3144?article_type=t

Play Video

Cite This Article
Boon, W. C., Petkovic-Duran, K., Zhu, Y., Manasseh, R., Horne, M. K., Aumann, T. D. Increasing cDNA Yields from Single-cell Quantities of mRNA in Standard Laboratory Reverse Transcriptase Reactions using Acoustic Microstreaming. J. Vis. Exp. (53), e3144, doi:10.3791/3144 (2011).

View Video