Summary

एक Haptic रोबोट की एक 3T fMRI में अनुकूलन

Published: October 04, 2011
doi:

Summary

अनुकूलन और 3T fMRI में एक haptic रोबोट के उपयोग में वर्णित है.

Abstract

Functional magnetic resonance imaging (fMRI) provides excellent functional brain imaging via the BOLD signal 1 with advantages including non-ionizing radiation, millimeter spatial accuracy of anatomical and functional data 2, and nearly real-time analyses 3. Haptic robots provide precise measurement and control of position and force of a cursor in a reasonably confined space. Here we combine these two technologies to allow precision experiments involving motor control with haptic/tactile environment interaction such as reaching or grasping. The basic idea is to attach an 8 foot end effecter supported in the center to the robot 4 allowing the subject to use the robot, but shielding it and keeping it out of the most extreme part of the magnetic field from the fMRI machine (Figure 1).

The Phantom Premium 3.0, 6DoF, high-force robot (SensAble Technologies, Inc.) is an excellent choice for providing force-feedback in virtual reality experiments 5, 6, but it is inherently non-MR safe, introduces significant noise to the sensitive fMRI equipment, and its electric motors may be affected by the fMRI’s strongly varying magnetic field. We have constructed a table and shielding system that allows the robot to be safely introduced into the fMRI environment and limits both the degradation of the fMRI signal by the electrically noisy motors and the degradation of the electric motor performance by the strongly varying magnetic field of the fMRI. With the shield, the signal to noise ratio (SNR: mean signal/noise standard deviation) of the fMRI goes from a baseline of ˜380 to ˜330, and ˜250 without the shielding. The remaining noise appears to be uncorrelated and does not add artifacts to the fMRI of a test sphere (Figure 2). The long, stiff handle allows placement of the robot out of range of the most strongly varying parts of the magnetic field so there is no significant effect of the fMRI on the robot. The effect of the handle on the robot’s kinematics is minimal since it is lightweight (˜2.6 lbs) but extremely stiff 3/4″ graphite and well balanced on the 3DoF joint in the middle. The end result is an fMRI compatible, haptic system with about 1 cubic foot of working space, and, when combined with virtual reality, it allows for a new set of experiments to be performed in the fMRI environment including naturalistic reaching, passive displacement of the limb and haptic perception, adaptation learning in varying force fields, or texture identification 5, 6.

Protocol

1. स्कैनर कमरे के बाहर मुफ्त समर्थित अंत और लंबे समय अलग संभाल के बाहरी अंत के साथ रोलिंग तालिका रखें. जाँचें कि रोबोट बंद है. टेबल सॉकेट में रोबोट प्लेस और 2 screws के साथ रोबोट पर एल्यूमीनियम सुरक…

Discussion

fMRI संगत रोबोट मोटर नियंत्रण के तंत्रिका विज्ञान में प्रयोग के लिए नई संभावनाओं को खोलता है. सेटअप में सबसे महत्वपूर्ण कदम fMRI, जो हम दो चरणों में में कलाकृतियों को रोकने के लिए रोबोट के परिरक्षण है. सबसे प?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

हम तकनीकी सहायता के लिए कुन लू और रोनाल्ड KURZ धन्यवाद देना चाहूंगा. इस काम ONR मूरी पुरस्कार सं द्वारा समर्थित किया गया था: N00014 10-1-0072, NSF अनुदान # SBE – ०५४२०१३ लर्निंग सेंटर, लर्निंग सेंटर की एक NSF विज्ञान, और NIH अनुदान # 2 R01 NS036449-11 के टेम्पोरल गतिशीलता के लिए.

Materials

Phantom premium 1.5/6dof, high force model Sensable www.sensable.com

References

  1. Ogawa, S., Lee, T. M., Kay, A. R., Tank, D. W. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. U.S.A. 87, 9868-9872 (1990).
  2. Heeger, D. J., Ress, D. What does fMRI tell us about neuronal activity. Nat. Rev. Neurosci. 3, 142-151 (2002).
  3. deCharms, R. C. Applications of real-time fMRI. Nat. Rev. Neurosci. 9, 720-729 (2008).
  4. Hribar, A., Koritnik, B., Munih, M. Phantom haptic device upgrade for use in fMRI. Medical and Biological Engineering and Computing. 47, 677-684 (2009).
  5. Trommershauser, J., Gepshtein, S., Maloney, L. T., Landy, M. S., Banks, M. S. Optimal compensation for changes in task-relevant movement variability. J. Neurosci. 25, 7169-7178 (2005).
  6. Konczak, J., Li, K. Y., Tuite, P. J., Poizner, H. Haptic perception of object curvature in Parkinson’s disease. PLoS ONE. 3, e2625-e2625 (2008).
  7. Lipton, M. L., Lipton, M. L. Artifacts: When things go wrong, it’s not necessarily all bad. Totally Accessible MRI. , 139-153 (2008).
  8. Rajh, M., Glodez, S., Flasker, J., Gotlih, K., Kostanjevec, T. Design and analysis of an fMRI compatible haptic robot. Robotics and Computer-Integrated Manufacturing. 27, 267-275 (2011).
  9. Burdet, E., Gassert, R., Gowrishankar, G., Chapuis, D., Bleuler, H., Ang, M., Khatib, O. fMRI compatible haptic interfaces to investigate human motor control. Experimental Robotics IX, of Springer Tracts in Advanced Robotics. 21, 25-34 (2006).
  10. Nakamura, T. Functional networks in motor sequence learning: abnormal topographies in Parkinson’s disease. Hum Brain Mapp. 12, 42-60 (2001).

Play Video

Cite This Article
Snider, J., Plank, M., May, L., Liu, T. T., Poizner, H. Adaptation of a Haptic Robot in a 3T fMRI. J. Vis. Exp. (56), e3364, doi:10.3791/3364 (2011).

View Video