Summary

实时功能磁共振成像生物反馈,针对污染焦虑的眶额皮层

Published: January 20, 2012
doi:

Summary

在这里,我们提出了一个方法训练的人来控制污染焦虑的一个大脑区域和探测污染的焦虑和大脑连接模式之间的关系。

Abstract

我们目前的训练科目,以控制其使用生物反馈的实时功能磁共振成像(RT – fMRI)技术,数据焦虑与污染相关的前额皮质区域活动的一种方法。增加本地区的活动是可见的污染,无论是对照组1和在个人与强迫症(OCD),2一种比较常见的,往往衰弱的精神障碍,涉及污染的焦虑焦虑的关系。虽然一直在强迫症,异常牵连许多大脑区域在前额皮层(OFC)是最一致的发现之一。3,4此外,在的OFC已发现多动症与强迫症的症状严重程度相关,并在多动症跌幅这一地区已报告相关症状严重程度下降,因此,能够控制这个大脑区域可能转化为CL强迫症状inical的改善,包括污染焦虑。 RT – fMRI数据,生物反馈是一种新技术,在活动的时空格局,在一个特定的地区,在主体的大脑(或分布的大脑活动模式与特定的关联)作为反馈信号提供的主体。最近的报告表明,人们能够控制在特定的大脑区域的活动发展,与RT – fMRI的生物反馈提供。7-12尤其是使用这种技术的目标参与情绪加工的脑区,一些研究报告在训练科目成功控制这些地区。13-18在一些情况下,RT – fMRI的生物反馈训练已报诱导受试者的认知,情感,或临床变化,8,9,13,19日在这里我们说明这种技术适用于治疗在健康受试者的污染焦虑。这种生物反馈干预将是一个宝贵的BASIC的研究工具:它允许扰乱脑功能的研究人员,测量大脑动态产生的变化,并与那些污染焦虑或其他行为的措施的变化。此外,这种方法的建立作为一个对作为一个强迫症的治疗干预的功能磁共振成像为基础的生物反馈调查的第一步。由于强迫症患者的四分之一,大约收到从目前可用的治疗,20日至22日的形式,没有什么好处,那些做的好处很少完全恢复,新方法,为治疗这种人口急需。

Protocol

1。刺激发展 广泛的刺激经济发展的需要 。 必须收集污染相关的和中立的图像和试点,以确保这些刺激诱 ​​导的焦虑是平衡的挑衅条件和显著更大的挑衅条件下比在中性条件下 ,更具体地说,需要以下四个刺激套 。 : 本地化的刺激:300污染相关的图像和300中性的图像是用于本地化的眶额皮层(OFC)的参与污染焦虑区域。这?…

Discussion

实时fMRI数据的生物反馈是一种新技术,需要更多的工作来优化这种方法,以最大限度地提高学习的科目。最近的研究探讨不同的电话号码或扫描会话的运行,14,18,27,如何学习改变反馈范式如何影响学习28,是否一个给定的生物反馈治疗在脑功能的变化,坚持超越,最终协议结果引起学习生物反馈训练期间15,18,27,29然而,需要更大量的工作沿着这些路线是,在心中?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项研究是由国立卫生研究院(R21 MH090384,R01 EB006494,RO1 EB009666,R01 NS051622)资助。 H. Sarofin C. Lacadie我们感谢他们的技术援助。

References

  1. Mataix-Cols, D., Cullen, S., Lange, K. Neural correlates of anxiety associated with obsessive-compulsive symptom dimensions in normal volunteers. Biol. Psychiatry. 53, 482-493 (2003).
  2. Mataix-Cols, D., Wooderson, S., Lawrence, N. Distinct neural correlates of washing, checking, and hoarding symptom dimensions in obsessive-compulsive disorder. Arch. Gen. Psychiatry. 61, 564-576 (2004).
  3. Menzies, L., Chamberlain, S. R., Laird, A. R. Integrating evidence from neuroimaging and neuropsychological studies of obsessive-compulsive disorder: the orbitofrontal-striatl model revisited. Neuroscience and Biobehavioral Reviews. 32, 525-549 (2008).
  4. Whiteside, S. P., Port, J. D., Abramowitz, J. S. A meta-analysis of functional neuroimaging in obsessive-compulsive disorder. Psychiatry Research. 132, 69-79 (2004).
  5. Swedo, S. E., Schapiro, M. B., Grady, C. L. Cerebral glucose metabolism in childhood-onset obsessive-compulsive disorder. Archives of General Psychiatry. 46, 518-523 (1989).
  6. Swedo, S. E., Pietrini, P., Leonard, H. L. Cerebral glucose metabolism in childhood-onset obsessive-compulsive disorder. Revisualization during pharmacotherapy. Arch. Gen. Psychiatry. 49, 690-694 (1992).
  7. deCharms, R. C., Christoff, K., Glover, G. H. Learned regulation of spatially localized brain activation using real-time fMRI. NeuroImage. 21, 436-443 (2004).
  8. deCharms, R. C., Maeda, F., Glover, G. H. Control over brain activation and pain learned by using real-time functional MRI. Proceedings of the National Academy of Sciences. 102, 18626-18631 (2005).
  9. Rota, G., Sitaram, R., Veit, R. Self-regulation of regional cortical activity using real-time fMRI: the right inferior frontal gyrus and linguistic processing. Hum. Brain. Mapp. 30, 1605-1614 (2009).
  10. Weiskopf, N., Veit, R., Erb, M. Physiological self-regulation of regional brain activity using real-time functional magnetic resonance imaging (fMRI): methodology and exemplary data. NeuroImage. 19, 577-586 (2003).
  11. Yoo, S. S., Jolesz, F. A. Functional MRI for neurofeedback: feasibility study on a hand motor task. Neuroreport. 13, 1377-1381 (2002).
  12. Yoo, S. S., O’Leary, H. M., Fairneny, T. Increasing cortical activity in auditory areas through neurofeedback functional magnetic resonance imaging. Neuroreport. 17, 1273-1278 (2006).
  13. Caria, A., Sitaram, R., Veit, R. Volitional control of anterior insula activity modulates the response to aversive stimuli. A real-time functional magnetic resonance imaging study. Biological psychiatry. 68, 425-432 (2010).
  14. Caria, A., Veit, R., Sitaram, R. Regulation of anterior insular cortex activity using real-time fMRI. Neuroimage. 35, 1238-1246 (2007).
  15. Hamilton, J. P., Glover, G. H., Hsu, J. J. Modulation of subgenual anterior cingulate cortex activity with real-time neurofeedback. Hum. Brain. Mapp. 32, 22-31 (2011).
  16. Johnston, S., Linden, D. E., Healy, D. Upregulation of emotion areas through neurofeedback with a focus on positive mood. Cognitive, affective & behavioral neuroscience. 11, 44-51 (2011).
  17. Johnston, S. J., Boehm, S. G., Healy, D. Neurofeedback: A promising tool for the self-regulation of emotion networks. NeuroImage. 49, 1066-1072 (2010).
  18. Zotev, V., Krueger, F., Phillips, R. Self-regulation of amygdala activation using real-time fMRI neurofeedback. PLoS One. 6, e24522-e24522 (2011).
  19. Haller, S., Birbaumer, N., Veit, R. Real-time fMRI feedback training may improve chronic tinnitus. Eur. Radiol. 20, 696-703 (2010).
  20. Bloch, M. H., Landeros-Weisenberger, A., Kelmendi, B. A systematic review: antipsychotic augmentation with treatment refractory obsessive-compulsive disorder. Mol. Psychiatry. 11, 622-632 (2006).
  21. Jenike, M. A. Clinical practice. Obsessive-compulsive disorder. N. Engl. J. Med. 350, 259-265 (2004).
  22. Pallanti, S., Quercioli, L. Treatment-refractory obsessive-compulsive disorder: methodological issues, operational definitions and therapeutic lines. Prog. Neuropsychopharmacol. Biol. Psychiatry. 30, 400-412 (2006).
  23. Mataix-Cols, D., Lawrence, N. S., Wooderson, S. The Maudsley Obsessive-Compulsive Stimuli Set: validation of a standardized paradigm for symptom-specific provocation in obsessive-compulsive disorder. Psychiatry. Res. 168, 238-241 (2009).
  24. Lang, P. J., Bradley, M. M., Cuthbert, B. N. International affective picture system (IAPS): Affective ratings of pictures and instruction manual. Technical Report A-82008. , (2008).
  25. Burns, G. L., Keortge, S. G., Formea, G. M. Revision of the Padua Inventory of obsessive compulsive disorder symptoms: distinctions between worry, obsessions, and compulsions. Behaviour research and therapy. 34, 163-173 (1996).
  26. Scheinost, D., Hampson, M., Bhawnani, J. A GPU accelerated motion correction algorithm for real-time fMRI. Human Brain Mapping. , 639 (2011).
  27. Hampson, M., Scheinost, D., Qiu, M. Biofeedback from the supplementary motor area reduces functional connectivity to subcortical regions. Brain Connectivity. 1, 91-98 (2011).
  28. Johnson, K. A., Hartwell, K., Lematty, T. Intermittent “Real-time” fMRI Feedback Is Superior to Continuous Presentation for a Motor Imagery Task: A Pilot Study. J. Neuroimaging. , (2011).
  29. Yoo, S. S., Lee, J. H., O’Leary, H. Functional magnetic resonance imaging-mediated learning of increased activity in auditory areas. Neuroreport. 18, 1915-1920 (2007).
check_url/3535?article_type=t

Play Video

Cite This Article
Hampson, M., Stoica, T., Saksa, J., Scheinost, D., Qiu, M., Bhawnani, J., Pittenger, C., Papademetris, X., Constable, T. Real-time fMRI Biofeedback Targeting the Orbitofrontal Cortex for Contamination Anxiety. J. Vis. Exp. (59), e3535, doi:10.3791/3535 (2012).

View Video