Summary

探讨动脉平滑肌的KV7钾离子通道功能使用膜片钳电生理和压力Myography

Published: September 14, 2012
doi:

Summary

测量KV7(KCNQ)钾离子通道活性的孤立动脉细胞(中与测量大蟒/扩张的反应(使用压力myography),同时采用膜片钳电生理技术)可以揭示有关的重要信息的的KV7渠道作用在血管平滑肌生理和药理学。

Abstract

电阻动脉的壁内的平滑肌细胞的收缩或松弛确定动脉直径并由此控制的血液流至容器内,并有助于全身血压。收缩过程中被限制主要是由胞内游离钙浓度(〔Ca 2 +] cyt的),它是依次由多种离子转运和频道控制。离子通道是常见的中间体,在信号转导通路激活血管活性激素对血管收缩或舒张功能。离子通道往往是有针对性的治疗药物,无论是有意( 钙离子通道阻断剂诱导的血管舒张和降低血压)或无意的( 引起不必要的心血管副作用)。

KV7(KCNQ)电压激活的钾离子通道最近被牵连的生理和治疗的重要塔尔格ETS调节平滑肌收缩。为了阐明KV7渠道在生理信号转导和治疗药物的行动中的具体作用,我们需要研究他们的活动是如何在细胞水平上调节,以及评估他们的贡献的背景下,完整的动脉。

大鼠肠系膜动脉提供了一个有用的模型系统。动脉可以很容易地解剖,结缔组织清除,并用孤立的动脉肌细胞膜片钳电生理准备,或为血管收缩剂/血管舒张反应的在相对生理条件下测量插管,加压。在这里,我们描述了这两种类型的测量方法,并提供一些例子,实验一体化设计可提供更清楚地了解这些离子通道在调节血管张力的作用。

Protocol

1。手术切除的小肠肠系膜血管商场麻醉300-400克SD大鼠(4%)与异氟醚吸入给药。 执行中线剖腹手术暴露的小肠系膜。 Exteriorize通过腹部切口非常小心,以避免创伤暴露的肠管及肠系膜小肠和大肠。轻轻地扇了的肠系膜超过无菌纱布。 外科手术切除小肠和大肠的一部分,包括盲肠(沿利润率和肠系膜上动脉/静脉)从主分支的起源仔细剪裁血管。 切除的组织转移到烧?…

Discussion

这里所描述的方法和实验方法相当强劲,并且能够产生明确的和可重复的结果时一丝不苟的细节。良好的电生理记录和收缩/扩张动脉段是依赖于细胞和动脉血管的健康。细胞制剂可以改变每一天,甚至使用相同的协议。隔离解决方案,可用于长达2周,但如果细胞制备的质量低,随之而来的两个天应准备新的隔离解决方案。我们已经发现,一批一批,因此隔离条件(时间的培养和酶的浓度)酶活?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作是由国家心脏,肺和血液研究所(NIH R01-HL089564)的资助KLB和博士后奖学金由美国心脏协会(09PRE2260209)和Arthur J.施密特基金会BKM。

Materials

Name Company Catalog Number Comments
Sodium Chloride Sigma S5886 Dissecting Solution: 145
Bath solution for Electrophysiology*: 140
Internal solution for electrophysiology: 10
Isolation solution for myocytes*: 140
Bath solution for pressure myography: 145
Lumen solution for pressure myography: 145
Potassium chloride Sigma P5405 Dissecting Solution: 4.7
Bath solution for Electrophysiology*: 5.36
Internal solution for electrophysiology: 135
Isolation solution for myocytes*: 5.36
Bath solution for pressure myography: 4.7
Lumen solution for pressure myography: 4.7
Potassium EGTA Sigma E4378 Internal solution for electrophysiology: 0.05
HEPES Sigma H9136 Bath solution for Electrophysiology*: 10
Internal solution for electrophysiology: 10
Isolation solution for myocytes*: 10
Disodium hydrogen phosphate Sigma S5136 Isolation solution for myocytes*: 0.34
Potassium hydrogen phosphate Sigma P5655 Isolation solution for myocytes*: 0.44
Magnesium Chloride Sigma M2393 Bath solution for Electrophysiology*: 1.2
Internal solution for electrophysiology: 1
Isolation solution for myocytes*: 1.2
Calcium Chloride Sigma C7902 Bath solution for Electrophysiology*: 2
Isolation solution for myocytes*: 0.05
Sodium phosphate Fisher Scientific BP331-1 Dissecting Solution: 1.2
Bath solution for pressure myography: 1.2
Lumen solution for pressure myography: 1.2
Magnesium Sulfate Sigma M2643 Dissecting Solution: 1.17
Bath solution for pressure myography: 1.17
Lumen solution for pressure myography: 1.17
MOPS Fisher Scientific BP308 Dissecting Solution: 3
Bath solution for pressure myography: 3
Lumen solution for pressure myography: 3
Pyruvic acid Sigma P4562 Dissecting Solution: 2
Bath solution for pressure myography: 2
Lumen solution for pressure myography: 2
EDTA dihydrate Research Organics 9572E Dissecting Solution: 0.02
Bath solution for pressure myography: 0.02
Lumen solution for pressure myography: 0.02
D-Glucose Sigma G7021 Dissecting Solution: 5
Bath solution for Electrophysiology*: 10
Internal solution for electrophysiology: 20
Isolation solution for myocytes*: 10
Bath solution for pressure myography: 5
Lumen solution for pressure myography: 5
Bovine serum albumin Sigma A3912 Dissecting Solution: 1%
Lumen solution for pressure myography: 1%
pH Dissecting Solution: 7.4
Bath solution for Electrophysiology*: 7.3
Internal solution for electrophysiology: 7.2
Isolation solution for myocytes*: 7.2
Bath solution for pressure myography: 7.4
Lumen solution for pressure myography: 7.4
Osmolarity Dissecting Solution: 300
Bath solution for Electrophysiology*: 298
Internal solution for electrophysiology: 298
Isolation solution for myocytes*: 298
Bath solution for pressure myography: 300
Lumen solution for pressure myography: 300

*11

Table 1. Components of solutions used in the experiment.

References

  1. Passmore, G. M. KCNQ/M Currents in Sensory Neurons: Significance for Pain Therapy. J. Neurosci. 23, 7227-7236 (2003).
  2. Falloon, B. J. Comparison of small artery sensitivity and morphology in pressurized and wire-mounted preparations. Am. J. Physiol. Heart Circ. Physiol. 268, H670-H678 (1995).
  3. Dunn, W. R. Enhanced resistance artery sensitivity to agonists under isobaric compared with isometric conditions. Am. J. Physiol. Heart Circ. Physiol. 266, H147-H155 (1994).
  4. Buus, N. H. Differences in sensitivity of rat mesenteric small arteries to agonists when studied as ring preparations or as cannulated preparations. Br. J. Pharmacol. 112, 579-587 (1994).
  5. Abdelhalim, M. A. Effects of big endothelin-1 in comparison with endothelin-1 on the microvascular blood flow velocity and diameter of rat mesentery in vivo. Microvasc. Res. 72, 108-112 (2006).
  6. Altura, B. M. Dose-response relationships for arginine vasopressin and synthetic analogs on three types of rat blood vessels: possible evidence for regional differences in vasopressin receptor sites within a mammal. J. Pharmacol. Exp. Ther. 193, 413-423 (1975).
  7. Henderson, K. K. Vasopressin-induced vasoconstriction: two concentration-dependent signaling pathways. J. Appl. Physiol. 102, 1402-1409 (2007).
  8. Mackie, A. R. Vascular KCNQ potassium channels as novel targets for the control of mesenteric artery constriction by vasopressin, based on studies in single cells, pressurized arteries, and in vivo measurements of mesenteric vascular resistance. J. Pharmacol. Exp. Ther. 325, 475-483 (2008).
  9. Brueggemann, L. I. Differential effects of selective cyclooxygenase-2 inhibitors on vascular smooth muscle ion channels may account for differences in cardiovascular risk profiles. Mol. Pharmacol. 76, 1053-1061 (2009).
  10. Brueggemann, L. I., Kaneez, F. S. . Patch Clamp Technique. , (2012).
  11. Berra-Romani, R. TTX-sensitive voltage-gated Na+ channels are expressed in mesenteric artery smooth muscle cells. Am. J. Physiol. Heart Circ. Physiol. 289, H137-H145 (2005).
check_url/4263?article_type=t

Play Video

Cite This Article
Brueggemann, L. I., Mani, B. K., Haick, J., Byron, K. L. Exploring Arterial Smooth Muscle Kv7 Potassium Channel Function using Patch Clamp Electrophysiology and Pressure Myography. J. Vis. Exp. (67), e4263, doi:10.3791/4263 (2012).

View Video