Summary

评价呼吸肌慢性脊髓损伤个人使用呼吸电机控制评估(RMCA)

Published: July 19, 2013
doi:

Summary

本出版物的目的是呈现我们原来的工作,多肌肉表面肌电图的方法来定量表征呼吸肌肉激活模式在个人与慢性脊髓损伤采用基于矢量分析。

Abstract

在呼吸过程中,呼吸肌的激活协调的集成输入从脑,脑干和脊髓。当这种协调被打乱脊髓损伤(SCI)被攻破,呼吸肌的神经支配损伤水平以下的控制,1,2导致呼吸肌功能不全和肺并发症。这些条件是其中SCI收录3患者死亡的主要原因。呼吸运动功能进行评估的标准肺功能测试,包括气道压力spirometrical和最大成果:用力肺活量(FVC),在一秒钟用力呼气量(FEV 1),最大吸气压力(PI 最大 ),最大呼气压力(PE 最大4,5。这些值提供间接测量呼吸肌性能6。在临床实践和研究,呼吸肌的表面肌电(表面肌电)记录可以用来呼吸运动功能评估,并帮助诊断神经肌肉病变。然而,表面肌电幅度的变异抑制呼吸运动功能发展的客观和直接的措施的努力。基于多肌肉 ​​表面肌电图的方法来表征电机控制肢体肌肉,被称为自愿响应指数(VRI)8上,我们开发了一个sEMG的记录从多个呼吸肌在自愿的数据分析工具,直接表征呼吸电机控制呼吸任务。我们称为呼吸电机控制评估(RMCA)9。这种矢量分析方法定量跨肌肉活动的数量和分布的指数的形式,在测试对象的表面肌电图的输出类似于在何种程度上涉及从健康(受伤的)控制的一组。生成的索引值已被证明具有高的表面效度,灵敏度和特异性9-11。我们发现以前RMCA成果显着水平的SCI和肺功能措施相关。我们这里提出的方法进行定量比较健康个体后脊髓损伤呼吸系统多肌肉激活模式。

Protocol

1。设置表面电极头被放置在左(L),右(R)呼吸肌:胸锁乳突肌,斜角肌(S)(SC),上斜方肌在锁骨中线(UT),锁骨部分胸大肌锁骨中线(P肌腹),膈肌肋间胸骨旁线(D),在第 6肋间腋前线(IC),平脐(RA)的腹直肌,腹斜肌腋中线(O),下斜方肌paraspinally在水平midscapular(LT )和椎旁,髂intercrestal线(PS)6 paraspinally。该接地电极被放置超过肩峰流程。 A动态实…

Representative Results

图3表示的肌电图及气道正压通气(顶部),同时记录期间MEPT从非受伤(左)和的SCI(右)的个人。注意降低气道压力和不存在时相比,非受损害的个人(标有灰色的椭圆)在SCI主题呼气肌表面肌活动。还要注意的是在任务开始,标记在底部,sEMG的活动和提高增加气道压力有关。 图4突出建设RV的主要步骤。被定义为数据点(步骤1)根据标记的开始?…

Discussion

标准的临床测试,以评估后呼吸运动功能SCI和其他疾病包括肺功能测试和美国脊髓损伤协会减值量表(AIS)的评价14,15。然而,这些工具是不适合的躯干和呼吸电机控制的定量评价。我们已经表明,在我们以前发表的作品,RMCA是一个有效的方法,定量地评价被SCI影响呼吸运动功能。我们已经证明,尽管这种方法可以用来测试再测试和主体与主体的肌电图振幅变异。

为…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作是由克里斯托弗和达纳里夫的基金(批准CDRF OA2-0802-2),肯塔基州脊髓和颅脑损伤研究信托基金(格兰特9 10A – KSCHIRT的的),克雷格·尼尔森基金会(批准1000056824 – HN000PCG的)和国家支持卫生研究院国家心肺和血液研究所(格兰特1R01HL103750-01A1)。

Materials

Name of the Device Vendor Product # Comments
PowerLab System 16/35 ADInstruments PL3516 Number of units depends on number of channels recorded
EMG System MA 300 Motion Lab Systems MA300-XVI Number of units depends on number of channels recorded
Low Pressure Transducer MP45 Validyne MP45-40-871
Basic Carrier Demodulator CD15 Validyne CD15-A-2-A-1
Air Pressure Manometer Boehringer 4103 Needed for MP45 calibration
Event Marker Hand held switch that when pressed gives a DC voltage and sound output (including 5-sec long mark)
Alcohol Wipes Henry Schein 1173771 Needed for electrodes placement
Electrode Gel Lectron II 36-3000-25 Needed for electrodes placement
Tagaderm Henry Schein 7779152 Needed for electrodes placement
Noseclip Henry Schein 1089460
T-piece Ventilator Monitoring Circuit with One-way Valves Alleglance (Airlife) 1504
Air Tube UnoMedical 400E
Table 1. List of specific equipment and supplies used for the Respiratory Motor Control Assessment.

References

  1. Schilero, G. J., Spungen, A. M., Bauman, W. A., Radulovic, M., Lesser, M. Pulmonary function and spinal cord injury. Respir. Physiol. Neurobiol. 166, 129-141 (2009).
  2. Winslow, C., Rozovsky, J. Effect of spinal cord injury on the respiratory system. Am. J. Phys. Med. Rehabil. 82, 803-814 (2003).
  3. Garshick, E., et al. A prospective assessment of mortality in chronic spinal cord injury. Spinal Cord. 43, 408-416 (2005).
  4. Jain, N. B., Brown, R., Tun, C. G., Gagnon, D., Garshick, E. Determinants of forced expiratory volume in 1 second (FEV1), forced vital capacity (FVC), and FEV1/FVC in chronic spinal cord injury. Arch. Phys. Med. Rehabil. 87, 1327-1333 (2006).
  5. Stolzmann, K. L., Gagnon, D. R., Brown, R., Tun, C. G., Garshick, E. Longitudinal change in FEV1 and FVC in chronic spinal cord injury. Am. J. Respir. Crit. Care Med. 177, 781-786 (2008).
  6. . American Thoracic Society/European Respiratory Society. ATS/ERS Statement on respiratory muscle testing. Am. J. Respir. Crit. Care Med. 166, 518-624 (2002).
  7. Sherwood, A. M., McKay, W. B., Dimitrijevic, M. R. Motor control after spinal cord injury: assessment using surface EMG. Muscle Nerve. 19, 966-979 (1996).
  8. Lee, D. C., et al. Toward an objective interpretation of surface EMG patterns: a voluntary response index (VRI). J. Electromyogr. Kinesiol. 14, 379-388 (2004).
  9. Ovechkin, A., Vitaz, T., de Paleville, D. T., Aslan, S., McKay, W. Evaluation of respiratory muscle activation in individuals with chronic spinal cord injury. Respir. Physiol. Neurobiol. 173, 171-178 (2010).
  10. Lim, H. K., Sherwood, A. M. Reliability of surface electromyographic measurements from subjects with spinal cord injury during voluntary motor tasks. J. Rehabil. Res. Dev. 42, 413-422 (2005).
  11. Lim, H. K., et al. Neurophysiological assessment of lower-limb voluntary control in incomplete spinal cord injury. Spinal Cord. 43, 283-290 (2005).
  12. Sherwood, A. M., Graves, D. E., Priebe, M. M. Altered motor control and spasticity after spinal cord injury: subjective and objective. 37, 41-52 (2000).
  13. McKay, W. B., Lim, H. K., Priebe, M. M., Stokic, D. S., Sherwood, A. M. Clinical neurophysiological assessment of residual motor control in post-spinal cord injury paralysis. Neurorehabil. Neural Repair. 18, 144-153 (2004).
  14. Marino, R. J., et al. International standards for neurological classification of spinal cord injury. J. Spinal. Cord. Med. 26, S50-S56 (2003).
  15. American Spinal Injury Association and International Spinal Cord Society. . International Standards for Neurological Classification of Spinal Cord Injury. , (2006).

Play Video

Cite This Article
Aslan, S. C., Chopra, M. K., McKay, W. B., Folz, R. J., Ovechkin, A. V. Evaluation of Respiratory Muscle Activation Using Respiratory Motor Control Assessment (RMCA) in Individuals with Chronic Spinal Cord Injury. J. Vis. Exp. (77), e50178, doi:10.3791/50178 (2013).

View Video