Summary

激光诱导的慢性高眼压表征视觉缺陷的小鼠模型

Published: August 14, 2013
doi:

Summary

慢性高眼压诱导使用激光光凝小梁在小鼠眼睛。激光治疗后的几个月内升高的眼压(IOP)。减少实验动物的视力和对比敏感度使用optomotor测试监测。

Abstract

经常伴有高眼压(IOP),青光眼,失明的主要原因之一。我们试图建立高眼压症的小鼠模型来模拟人类高眼压性青光眼。这里激光照射施加到角膜缘photocoagulate水外流,诱导闭角。使用激光治疗之前和之后的反弹式眼压计的眼压的变化进行监测。是用于测量相应的变化在视觉能力一个optomotor的行为测试。代表性的结果显示从一个鼠标开发激光照射后持续高眼压。下降的视力,对比敏感度观察在高眼压鼠标。总之,我们的研究引入了一个有价值的模型系统研究青光眼的小鼠神经元变性的分子机制。

Protocol

程序 C57BL/6J小鼠(杰克逊实验室的Bar Harbor,ME)提出在西北大学的动物护理设施。按照协议,由西北大学机构动物护理和使用委员会,符合使用动物在神经科学的研究由美国国立卫生研究院的指引批准用于所有动物。 1。激光光凝从先前公布的5-7协议的程序修改光凝。 麻醉40-60日龄鼠标,腹腔内注射氯胺酮(100毫克/公斤…

Representative Results

中所描述的程序,目的是激光照明在角膜缘的区域photocoagulate水外流的小梁,诱导闭角型青光眼( 图1)。大多数光刻眼睛表现出没有明显的物理伤害,色素脱落或感染,与以前的研究结果相一致6。当一小群​​小鼠(小于5%所有的光刻动物)展出,如的瘪眼球,严重的白内障,显着的色素支队,或出血严重损害的体征,我们立刻处死他们。约有30%的光刻眼睛轻微的角膜疤?…

Discussion

我们报告以上,持续的高眼压可诱发小鼠眼睛的激光照射。盐水注射模型18和静脉烧灼模型的11两者都需要广泛的显微技能相比,激光照射是相对简单和容易执行的。通常情况下,我们就可以进行激光照射4-6小鼠在2-3小时。实现持续的高眼压的关键步骤是前房压扁之前,激光和激光照射的参数。排水便于目标激光的小梁区和减少伤害到附近的睫状体和血管6的前房中的流体?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

本文所载的工作已经得到了青光眼研究由美国健康援助基金会(XL),威廉&玛丽格雷夫特别学术研究奖,以防止失明(XL),博士道格拉斯·约翰逊奖伊利诺伊防盲协会(HC)和美国国立卫生研究院:授予R01EY019034(XL)。

Materials

Reagent
moxifloxacin Alcon Labs, Inc. NDC 0065-4013-03 0.5 %, Rx only
Proparacaine Hydrochloride Bausch & Lomb NDC 24208-730-06 0.5 %, Rx only
Ophthalmic Solution USP Bausch & Lomb NDC 24208-730-06 .5 %, Rx only
ketamine Butler Schein Animal Health NDC 11695-0550-1 100 mg / kg
xylazine LLOYD Inc. of Iowa NADA 139-236 10 mg / kg
atropine sulfate solution Alcon Labs, Inc. NDC 61314-303-02 1 %, Rx only
Equipment
Slit Lamp, TOPCON Visual Systems Inc SL-3E powered by PS-30A
OptoMotry 1.8.0 virtual CerebralMechanics Inc.
opto-kinetic testing system CerebralMechanics Inc.
Tonometer, TonoLab, for mice Colonial Medical Supply
Heating pad Sunbeam Products Inc 722-810
Argon laser Coherent Inc Ultima 2000SE
DECAPICONE Plastic cone holder Braintree Sci Inc. MDC-200 for mouse

References

  1. Gupta, N., Yucel, Y. H. Glaucoma as a neurodegenerative disease. Curr. Opin. Ophthalmol. 18, 110-114 (2007).
  2. Quigley, H. A. Neuronal death in glaucoma. Prog. Retin. Eye Res. 18, 39-57 (1999).
  3. McKinnon, S. J., Schlamp, C. L., Nickells, R. W. Mouse models of retinal ganglion cell death and glaucoma. Experimental Eye Research. 88, 816-824 (2009).
  4. Pang, I. H., Clark, A. F. Rodent models for glaucoma retinopathy and optic neuropathy. J. Glaucoma. 16, 483-505 (2007).
  5. Levkovitch-Verbin, H., et al. Translimbal laser photocoagulation to the trabecular meshwork as a model of glaucoma in rats. Investigative Ophthalmology & Visual Science. 43, 402-410 (2002).
  6. Aihara, M., Lindsey, J. D., Weinreb, R. N. Experimental mouse ocular hypertension: establishment of the model. Investigative Ophthalmology & Visual Science. 44, 4314-4320 (2003).
  7. Grozdanic, S. D. Laser-induced mouse model of chronic ocular hypertension. Investigative ophthalmology & visual science. 44, 4337-4346 (2003).
  8. Sappington, R. M., Carlson, B. J., Crish, S. D., Calkins, D. J. The microbead occlusion model: a paradigm for induced ocular hypertension in rats and mice. Investigative ophthalmology & visual science. 51, 207-216 (2010).
  9. Ding, C., Wang, P., Tian, N. Effect of general anesthetics on IOP in elevated IOP mouse model. Experimental Eye Research. 92, 512-520 (2011).
  10. Kalesnykas, G., et al. Retinal ganglion cell morphology after optic nerve crush and experimental glaucoma. Investigative Ophthalmology & Visual Science. 53, 3847-3857 (2012).
  11. Shareef, S. R., Garcia-Valenzuela, E., Salierno, A., Walsh, J., Sharma, S. C. Chronic ocular hypertension following episcleral venous occlusion in rats. Experimental Eye Research. 61, 379-382 (1995).
  12. Chiu, K., Chang, R., So, K. F. Laser-induced chronic ocular hypertension model on SD rats. J. Vis. Exp. (10), e549 (2007).
  13. Fu, C. T., Sretavan, D. Laser-induced ocular hypertension in albino CD-1 mice. Investigative Ophthalmology & Visual Science. 51, 980-990 (2010).
  14. Rangarajan, K. V. Detection of visual deficits in aging DBA/2J mice by two behavioral assays. Curr. Eye Res. 36, 481-491 (2011).
  15. Wang, L., et al. Direction-specific disruption of subcortical visual behavior and receptive fields in mice lacking the beta2 subunit of nicotinic acetylcholine receptor. J. Neurosci. 29, 12909-12918 (2009).
  16. Douglas, R. M., et al. Independent visual threshold measurements in the two eyes of freely moving rats and mice using a virtual-reality optokinetic system. Visual Neuroscience. 22, 677-684 (2005).
  17. Prusky, G. T., Alam, N. M., Beekman, S., Douglas, R. M. Rapid quantification of adult and developing mouse spatial vision using a virtual optomotor system. Investigative Ophthalmology & Visual Science. 45, 4611-4616 (2004).
  18. Morrison, J. C., et al. A rat model of chronic pressure-induced optic nerve damage. Experimental Eye Research. 64, 85-96 (1997).
  19. Cone, F. E., et al. The effects of anesthesia, mouse strain and age on intraocular pressure and an improved murine model of experimental glaucoma. Experimental Eye Research. 99, 27-35 (2012).
  20. Liu, X., et al. Brain-derived neurotrophic factor and TrkB modulate visual experience-dependent refinement of neuronal pathways in retina. J. Neurosci. 27, 7256-7267 (2007).
  21. Liu, X., et al. Regulation of neonatal development of retinal ganglion cell dendrites by neurotrophin-3 overexpression. The Journal of Comparative Neurology. 514, 449-458 (2009).
  22. Sun, W., Li, N., He, S. Large-scale morphological survey of mouse retinal ganglion cells. The Journal of Comparative Neurology. 451, 115-126 (2002).
  23. Feng, L., et al. Sustained Ocular Hypertension Induces Dendritic Degeneration of Mouse Retinal Ganglion Cells that Depends on Cell-type and Location. Investigative Ophthalmology & Visual Science. , (2013).
check_url/50440?article_type=t

Play Video

Cite This Article
Feng, L., Chen, H., Suyeoka, G., Liu, X. A Laser-induced Mouse Model of Chronic Ocular Hypertension to Characterize Visual Defects. J. Vis. Exp. (78), e50440, doi:10.3791/50440 (2013).

View Video