Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove

Medicine

Isolation and Functional Characterization of Human Ventricular Cardiomyocytes from Fresh Surgical Samples

Published: April 21, 2014 doi: 10.3791/51116

Summary

Current knowledge on the cellular basis of cardiac diseases mostly relies on studies on animal models. Here we describe and validate a novel method to obtain single viable cardiomyocytes from small surgical samples of human ventricular myocardium. Human ventricular myocytes can be used for electrophysiological studies and drug testing.

Abstract

Cardiomyocytes from diseased hearts are subjected to complex remodeling processes involving changes in cell structure, excitation contraction coupling and membrane ion currents. Those changes are likely to be responsible for the increased arrhythmogenic risk and the contractile alterations leading to systolic and diastolic dysfunction in cardiac patients. However, most information on the alterations of myocyte function in cardiac diseases has come from animal models.

Here we describe and validate a protocol to isolate viable myocytes from small surgical samples of ventricular myocardium from patients undergoing cardiac surgery operations. The protocol is described in detail. Electrophysiological and intracellular calcium measurements are reported to demonstrate the feasibility of a number of single cell measurements in human ventricular cardiomyocytes obtained with this method.

The protocol reported here can be useful for future investigations of the cellular and molecular basis of functional alterations of the human heart in the presence of different cardiac diseases. Further, this method can be used to identify novel therapeutic targets at cellular level and to test the effectiveness of new compounds on human cardiomyocytes, with direct translational value.

Introduction

Dissection of the electrophysiological properties of the myocardium has progressed markedly after the development of techniques for single cardiac myocyte isolation. Recent advancements in the understanding of cardiac Excitation Contraction Coupling (EC-Coupling) have also been made possible by the capability of isolating viable single cardiomyocytes that retain all the physiological properties of the intact tissue. Patch clamp methods are routinely employed to study the function and pharmacological modulation of cardiac sarcolemmal ion currents. Recordings of intracellular calcium dynamics with Ca2+ sensitive dyes are also regularly performed on single cardiac myocytes from a variety of healthy and diseased models, providing vital data on the physiology of EC-Coupling as well as on the pathological alterations of intracellular Ca2+ homeostasis leading to mechanical impairment and increased arrhythmogenic burden in cardiac diseases. Information from these studies is critical for understanding the electrophysiological and mechanical effects of drugs in the clinical setting. However, there are species specific differences in the transmembrane currents and in the EC-Coupling proteins that account for specific features of cardiac action potential and cardiac mechanics. Thus, while studies of myocytes isolated from non human mammals have elucidated the biophysical properties and physiological roles of specific transmembrane ion channels and EC-Coupling proteins, they do not necessarily provide relevant models of human cardiac myocytes. Isolation of viable myocytes from human myocardium is therefore essential to fully understand the pathophysiology of cardiac diseases and validate novel therapeutic approaches.

Human atrial tissue is readily available as atrial appendages are often discarded during surgical procedures. Initial quantitative studies of adult human cardiac action potentials and ionic currents employed enzymatically isolated atrial cells1-4. Recordings of action potentials or currents from isolated adult human ventricular cells have been subsequently reported3,5-10. Most of these studies have used cells obtained from explanted hearts and utilized either collagenase perfusion of a coronary artery segment or exposure of relatively large quantities of excised tissue to collagenase to obtain isolated cells. These studies allowed a detailed characterization of a number of transmembrane ion currents from human ventricular cardiomyocytes from healthy hearts and from patients with terminal heart failure. Recordings of L-type Ca2+ current (ICa-L)5-7, transient outward potassium current (Ito)8, inward rectifier potassium current (Iκ1)8, the different components of delayed rectifier potassium current (Iκ)9 have been reported. Advances and refining of the isolation procedure10, allowed a clear characterization of the ionic basis of the increased arrhythmogenic potential in terminal heart failure, comprising action potential prolongation11, delayed after depolarizations12 and increased funny current13 leading to diastolic depolarization and premature beats.

Adult cardiac myocytes are normally isolated from small animals by retrograde perfusion of the whole heart with various enzyme mixtures, a technique that produces high yields of Ca2+-tolerant cells14. Isolation of cardiac myocytes from fragments of tissue is inherently less successful probably because of the limited access of enzymes to individual myocytes compared with that achieved by perfusion of coronary arteries. Because of the very limited availability of unused donor hearts, the only practical way to obtain normal human ventricular cells on a regular basis is by enzymatic digestion of the often very small tissue fragments excised during elective surgical procedures. The only human disease model that has been thoroughly characterized at cell level is terminal heart failure, due to the accessibility to transplanted hearts. However, terminal heart failure occurs in a minority of patients and often involves a common pathway of severe remodeling of myocardial cells, which is relatively independent of the underlying cause15. The ability to assess the function of single cardiomyocytes from patients at an earlier non failing stage of disease is crucial to understand the specific pathophysiology of different inherited or acquired conditions. Hypertrophic cardiomyopathy (HCM) is a telling example. HCM is a common (1/500 individuals) inheritable cardiac condition characterized by cardiac hypertrophy, increased arrhythmogenic risk and contractile alterations due to outflow tract obstruction and diastolic dysfunction16. Cardiomyocytes from HCM hearts undergo a complex remodeling processes involving changes in cell structure (hypertrophy, myofibrillar disarray) and EC-Coupling17. However, most information of myocyte dysfunction in HCM has come from transgenic animal models. Since only a minority of HCM patients evolves toward terminal heart failure and requires cardiac transplantation, HCM hearts are very rarely available for cell isolation with standard methods. However, at least 30% of HCM patients develop obstructive symptoms due to massive septal hypertrophy altering outflow tract blood flow during systole (HCM)18. The most effective available therapeutic option for the relief of obstruction in HCM is surgical septal myectomy: during this surgical procedure, a variable sized portion of upper septum is removed by trans aortic approach. This portion of hypertrophied septum is therefore available for cell isolation from the fresh tissue.

A method for the isolation of human ventricular myocytes from single, small transvenous endomyocardial biopsy specimens has been previously developed and published19. We implemented a method to isolate single septal myocytes from ventricular myocardium samples from patients undergoing cardiac surgery, including patients with HCM undergoing septal myectomy and patients undergoing valve replacement procedures. In addition to a detailed description of the isolation protocol, representative electrophysiological and Ca2+ fluorescence measurements are presented, demonstrating the viability of the isolated human ventricular myocytes and the feasibility of patch clamp and intracellular Ca2+ studies.

Subscription Required. Please recommend JoVE to your librarian.

Protocol

The experimental protocols on human tissue were approved by the ethical committee of Careggi University-Hospital (2006/0024713; renewed May 2009). Each patient gave written informed consent.

1. Solutions and Equipment Preparation

Solutions are described in Table 1. A simplified flowchart of the cell isolation procedure is found in Figure 1.

Solution CP DB KB TB PS EB1 EB2
Reagent (mM) KH2PO4 50
MgSO4 8 1.2 5 1.2 1.2
HEPES 10 10 10
adenosine 5
glucose 140 10 20 10 10 10
mannitol 100
taurine 10 20 5 20 20
NaCl 113 136 113 113
KCl 4.7 85 5.4 25 4.7 4.7
MgCl2 1.2 5
KH2PO4 0.6 30 0.6 0.6
Na2HPO4 0.6 0.6 0.6
NaHCO3 12 12 12
KHCO3 10 10 10
Na-pyruvate 4 4 4
BDM 10 10 10
BHBA 5
succinic acid 5
EGTA 0.5
K2-ATP 2
pyruvic acid 5
creatine 5
KMES 115
Enzymes (U/ml) Collagenase Type V 250 250
Protease Type XXIV 4
pH 7.4 KOH 7.3 NaOH 7.1 KOH 7.35 NaOH 7.2 KOH 7.3 NaOH 7.3 NaOH

Table 1. Solutions used for specimen collection, cell isolation and functional characterization of myocytes. CP= cardioplegic solution; DB=dissociation buffer; KB= Kraft-Bruhe solution; TB=Tyrode buffer; PS=pipette solution; EB1= enzyme buffer 1; EB2= enzyme buffer 2.

  1. Prepare cardioplegic (CP) solution. CP solution can be stored at 4 °C for up to 1 week.
  2. Prepare Ca2+-free dissociation buffer (DB). This solution should be used within the day.
  3. Prepare Kraft-Bruhe (KB) solution. KB solution can be stored at 4 °C for up to 1 week.
  4. Prepare Ca2+-free Tyrode buffer (TB). This solution should be used within the day.
  5. Filter all solutions using syringe filters prior to use.
  6. Prepare the digestion device (Figure 2), a scraping container made of two facing brushes of silicone elastomer, one of which rotated by an electric motor. The digestion device is custom made. Details on the digestion device are in Figure 8; images of the device are in Figures 2C and 2D. Wash the tissue chamber with 70% ethanol and water.

2. Collection and Processing of Myocardial Samples

  1. Pour 40 ml of cardiplegic (CP) solution in a 50 ml tube and store it in ice for specimen transportation from the operative room to the cell isolation lab.
  2. Collect the ventricular myocardial specimen from the operative room immediately after excision, wash it with ice cold CP solution and store it in the tube. Use endocardial specimens excised from the upper inter ventricular septum during open heart surgery, weighting >100 mg.
  3. Rapidly transfer the specimen to the lab area; start specimen processing within 10 min from specimen excision.
  4. While keeping the specimen in ice cold CP buffer, carefully remove the endocardial fibrotic layer using fine scissors under a stereomicroscope; afterwards, cut the myocardial tissue to small pieces (2-3 mm long). Depending on tissue sample size, cut a total amount of ventricular myocardium between 100 mg and 1 g for each isolation.
  5. Upon completion of tissue mincing, transfer the myocardial chunks into the digestion device, with clean ice cold CP solution. Avoid filling the whole volume between the two silicon brushes (3-4 ml) with myocardial chunks, using no more than 1 g of total tissue.

3. Washing and Digestion of Myocardial Chunks

  1. After the chunks are transferred into the scraping chamber of the digestion device, change the CP buffer in the chamber with cold Ca2+-free dissociation buffer (DB).
  2. Place the digestion device in a thermostatic bath, in order for the chamber to be in contact with the heated water in the bath (Figure 1). Set the bath to 37.5 °C and turn it on, in order to slowly raise the temperature of the tissue chamber. Turn on the motor of the digestion device, setting the rotation speed to 1 revolution/second.
  3. Perform 3 washing cycles with DB, changing the solution in the chamber with clean DB every 8 min. The DB is warmed (37 °C) and oxygen saturated before getting in contact with the myocardial chunks.
  4. Prepare enzyme buffer 1 (EB1) by adding 250 U/ml of Collagenase Type V and 4 U/ml Protease Type XXIV to DB solution. Prepare enzyme buffer 2 (EB2) by adding 250 U/ml Collagenase Type V to DB solution. Warm up (37 °C) and oxygenate EB1 and EB2.
  5. Perform two 12 min cycles of digestion in the rotating digestion device with 100% oxygenated EB1 (at 37 °C). At each cycle, use ~3 ml of EB1. Remove the solution by pipette aspiration and discard it after each cycle.
  6. Prepare 6 15 ml tubes for cell collection and ~80 ml of cold (4 °C) KB solution for eluting the buffers.
  7. Perform a first 15 min digestion cycle with 3 ml 100% oxygenated EB2 at 37 °C. After the digestion cycle, collect the solution containing the first dissociated myocytes in a 15 ml tube and dilute the cell suspension with 12 ml cold KB solution. Store the tube flat at room temperature.
  8. Dilute the remaining EB2 solution with an equal amount of DB in order to halve the concentration of collagenase V for the following digestion cycles.
  9. Perform other 5 12 min digestion cycles with 3 ml EB2 at 37 °C; after each of them collect of myocyte containing buffer in a 15 ml conical tube and dilute it with 12 ml KB solution. Store the 6 cell containing tubes at room temperature for 30 min.

4. Cell Resuspension and Ca2+ Readaptation

  1. Add 1 mg/ml bovine serum albumin (BSA) to 20 ml Ca2+-free Tyrode buffer (TB). Filter the solution.
  2. Centrifuge the six myocyte containing conical tubes at 100 x g for 5 min to force myocytes to settle. Remove the supernatant and resuspend the cells in each tube with a variable amount (1-3 ml, depending on the yield) of BSA containing TB at RT.
  3. Gradually increase Ca2+ concentration in the cell containing buffer by adding small aliquots of 100 mmol/L CaCl2 solution. In the first and second steps Ca2+ concentration is raised up to 50 μmol/L and 100 μmol/L, respectively. The following Ca2+ addition steps are performed every 5 min and the concentration is raised by 100 μmol/L at each step to a final concentration of 0.9 mmol/L.
  4. Assess the yield of the isolation procedure. Transfer 0.5 ml of myocyte containing solution onto the glass bottom chamber of a microscope. Evaluate 15 microscope fields at 10x objective magnification and calculate the percentage of healthy myocytes (e.g. rod shaped cells with clear striations and no significant inclusions, Figure 2). The expected yield is around 20 %.

5. Functional Evaluation of Isolated Cardiomyocytes.

The following protocol is an example of human cardiomyocyte functional assessment including simultaneous recordings of action potentials and intracellular Ca2+ fluxes.

  1. Prepare pipette solution (PS) for patch clamp experiments in perforated patch configuration. The solution can be stored at -20 °C for up to 3 months.
  2. Add 1.8 mmol/L CaCl2 to Ca2+-free Tyrode buffer (TB). Use this solution for superfusion of cardiomyocytes during patch clamp/fluorescence experiments.
  3. Transfer 1 ml of cell suspension to a 1.5 ml tube and add 10 μmol/L Fluoforte and 10 μl Powerload Concentrate. Incubate for 30 min at RT. Afterwards, set the tube in vertical position and leave the cell to settle for 5 min; resuspend the cells in Ca2+ containing TB.
  4. Transfer 0.25 ml of cell suspension to a small (0.5 ml), temperature controlled microscope mounted recording chamber, superfused by gravity with a heated microperfusor system at a flow rate of 0.3 ml/min (temperature: 37 ± 0.5 °C).
  5. Using a micropipette puller, prepare patch clamp pipettes with a tip diameter of 3 to 5 μm and a resistance of 3 to 4.5 M when filled with PS.
  6. Add amphotericin B to a batch of PS (250 μg/ml) and use it to fill the electrodes. 
  7. Select a rod shaped cell with clear striations, devoid of inclusions, form the giga seal and wait 5 to 10 min, until access resistance drops below 20 MΩ.
  8. Elicit action potentials in current clamp mode using short pulses (< 3 msec) at different frequencies of stimulation (0.2 Hz, 0.5 Hz and 1 Hz, 1 min at each frequency). During the recording phase, turn on bright field illumination at 492 ± 3 nm and detect Fluoforte fluorescence at 505-520 nm. Acquire fluorescence and membrane potential signals using Digidata 1440A and pClamp 10.0 software. Repeat the recording sequence multiple times if needed; however, keep the total recording time below 15 min for each cell.

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

The method described above was employed to characterize the functional abnormalities of cardiomyocytes isolated from the interventricular septum of patients with hypertrophic cardiomyopathy (HCM) who underwent myectomy operation, as compared with non failing non hypertrophic surgical patients21. The results contained in this section are derived from that work21 and are shown here as an example of how this technique can be used to characterize the alterations of myocardial cell function in cardiac disease conditions.

A representative surgical sample from a patient with HCM is shown in Figure 2A. Surgical samples were extremely variable in terms of size and thickness of the endocardial fibrous streaks. The amount of myocardial tissue that we used for each isolation procedure from HCM samples was around 1g. Instead, the amount of tissue used for control samples was smaller (100-500 mg.), due to lower tissue availability. The yield was significantly higher when control samples were processed with respect to HCM, probably because the relative amount of viable myocardial cells within the tissue is reduced in HCM myocardium and endomyocardial fibrosis is increased22. From these observation we concluded that the required amount of tissue to obtain viable cells may be variable depending on the absence or presence of myocardial disease.

Samples were cut into small chunks as shown in Figure 2B. Afterwards, the chunks were transferred into the chamber of the digestion device (Figure 2C) and used for single cell isolation as described above (Figure 2D). Representative photomicrographs of a cell suspension obtained using the described cell isolation procedure from an interventricular septum sample is shown in Figures 3A and 3B; magnified images of single ventricular cardiomyocytes are depicted in Figures 3C-3F. Cardiomyocytes from HCM samples were used for simultaneous recordings of action potentials and intracellular Ca2+ variations as described in the protocol section. Representative simultaneous traces showing membrane voltage (above) and intracellular Ca2+ (below) during stimulation at 3 different frequencies are shown in Figure 4: these traces were recorded from a single cardiomyocyte isolated from a HCM sample.

Results of patch clamp studies showed that the action potential duration (APD) recorded at various frequencies of stimulation was markedly prolonged in cardiomyocytes from patients with HCM (HCM cardiomyocytes) compared to controls (Figure 5A and 5B). To ascertain the maintenance of physiological responses in isolated myocytes, we tested the effects of isoproterenol, used at 10-7M (Figure 5C): β-adrenergic stimulation produced the expected AP shortening in control myocytes. Since prolonged APD leads to increased risk of early after depolarisations (EADs)23, the occurrence of EADs, detected as spontaneous depolarisations during the plateau phase of the AP, was measured. In HCM cardiomyocytes, EADs were significantly more frequent compared to controls (Figure 5D). Representative trace showing multiple EADs is shown in Figure 5E

To test whether longer APD and ion current abnormalities may affect excitation-contraction coupling mechanisms in HCM cardiomyocytes, the properties of intracellular Ca2+ variations were assessed during stimulation. The amplitude of Ca2+ transients evoked in current-clamp conditions were similar in HCM compared to control cardiomyocytes (Figure 6A). Conversely, the kinetics of Ca2+ transient, were significantly longer in HCM (Figure 6B). Additionally, intracellular diastolic Ca2+ concentration was markedly higher in HCM compared to control cardiomyocytes (Figure 6C) and increased more prominently upon increase in stimulation frequency.

Notably, cardiomyocytes isolated with this method from human ventricular samples have also been successfully employed for other applications, including voltage-clamp recordings of specific transmembrane currents (Figure 7A), intracellular Ca2+ and/or cell shortening recordings during electrical field stimulation (Figure 7B) and assessment of the fine structure of the sarcolemma using confocal microscopy and membrane-bound fluorescent labels (Figure 7C).

Figure 1
Figure 1. Flowchart of cell isolation procedure.

Figure 2
Figure 2. Processing of ventricular samples for cell isolation. (A) Representative image showing a sample of ventricular myocardium from a patient with HCM who underwent septal myectomy operation. Calibration bar= 5mm. (B) Chunks of ventricular tissue cut from a ventricular surgical specimen, to be used for cell isolation. Calibration bar= 5mm. (C) Images of the digestion device. The device comprises a digestion chamber with two silicon brushes: the superior brush is able to rotate when moved by a motor. (D) Image showing the digestion device in the thermostated bath during enzymatic digestion of ventricular tissue.

Figure 3
Figure 3. Isolated human ventricular cardiomyocytes. (A-B) The panel shows photomicrographs of two microscope fields (10x objective) showing representative cardiomyocyte suspensions. Of note, about 30% of cells are rod shaped and show clear striations. Calibration bar= 100 μm. (C-E) Representative images of 3 human cardiomyocytes isolated from a specimen of an HCM patient (40x objective). Calibration bar= 20μm. (F) Image showing a human ventricular cardiomyocytes touched by the tip of the patch pipette for recordings. Calibration bar= 20μm.

Figure 4
Figure 4. Simultaneous recording of membrane potential and intracellular calcium. Representative trace showing membrane potential (above) and intracellular calcium (below) recorded from a single myocyte isolated from an HCM sample. The myocyte is stimulated via the patch pipette at 0.2 Hz, 0.5 Hz and 1 Hz.

Figure 5
Figure 5. Alterations of action potentials in ventricular cardiomyocytes from HCM samples. (A) Representative superimposed action potentials elicited at 0.2 Hz, 0.5 Hz and 1 Hz from a control myocyte (left, grey traces) and a HCM myocyte (right, black traces). (B) Average action potential duration at 90% repolarization (APD90%) in HCM (n=81) and control cardiomyocytes (n=29) at the three pacing frequencies tested. (C) Occurrence of EADs in cardiomyocytes from HCM patients and control samples. (D) Superimposed action potentials at 0.5Hz from a control myocyte in the absence (continuous trace) and in the presence of 10-7 M isoproterenol. (E)Representative trace showing membrane potential of a cardiomyocyte from an HCM patient displaying several spontaneous depolarizations occurring during the plateau phase (early after depolarizations, EADs), marked by arrows. Stimuli are marked by short lines below the trace. **=p<0.01 unpaired t-test. All panels in the figure are modified with permission from Coppini et al. 201221.

Figure 6
Figure 6. Alterations of calcium transients in ventricular cardiomyocytes from HCM samples. (A) Representative superimposed calcium transients elicited during stimulation at 0.2 Hz via the patch pipette in a control myocyte (grey) and an HCM cell (black). Notably, the amplitude of Ca2+ transients does not differ between the two cells. (B) kinetics of Ca2+ transients in HCM (n=42) and control (n=24) cardiomyocytes: time from stimulus to peak transient (TP), time from peak to 50% decay (T50%) and time from peak to 90% decay of transient (T90%) are shown. (C) Representative long traces showing intracellular Ca2+ during stimulation at 3 different frequencies in HCM and control myocytes, highlighting the increased diastolic Ca2+ at high pacing rates in the HCM myocyte. (D) Average diastolic Ca2+ in HCM (n=42) and control (n=24) cardiomyocytes at 3 different pacing rates. **=p<0.01 unpaired t test. All panels in the figure are modified with permission from Coppini et al. 201221.

Figure 7
Figure 7. Additional experimental applications using human ventricular myocytes. (A) Left: representative superimposed traces showing L-type Ca2+ current recorded under voltage clamp at different membrane voltages with a specific protocol (see21 for details). Right: average L-type Ca2+ current peak density from 18 cells isolated from HCM samples at different membrane. Voltages. (B) Intracellular Ca2+ trace recorded from a ventricular myocyte during electrical field stimulation at 1 Hz. (C) Confocal image of a ventricular cardiomyocyte from a HCM sample stained with a fluorescent membrane bound dye (Di-3-ANEPPDHQ). Of note, the density of ttubules is low, suggesting morphological membrane remodeling in HCM.

Figure 8
Figure 8. The digestion device. (A-B) Components of the digestion device. A variable-speed rotating motor is connected to a first plastic arm, which is connected to a second one. The second plastic arm is removable and connected to the upper brush. Brushes are made with silicone elastomer. A PTFE negative mold, with 100 holes spaced ~1.5 mm was used to cast the brushes from liquid silicone. The inner space of the mold has 1.9 cm diameter and is 6 mm thick, producing brushes of the same size. The holes located on one side of the mold are made in order to produce 8 mm long bristles when the brushes are cast and removed from the mold . After the liquid silicone is put into the mold, at least 48 h are needed for complete hardening. Brushes are mounted inside a glass tube (inner diameter= 2 cm; thickness 2 mm) and the cylindrical chamber formed by the two brushes and the glass walls is hermetically sealed by two rubber O-rings. Brushes need to be pushed one to the other; the bottom one is glued on a plastic base, while the upper one is glued to the plastic end of the motor arm and thus is able to rotate. (C) Magnified views of the upper brush. Of note, the brush needs to be glued to the end of the motor arm in order for it to rotate (D) The components of the chamber are shown in their final position. The space between the two brushes (the actual chamber) is ~2 cm wide and 7-8 mm high; this space easily fits 3-4 ml of buffer, other than up to 1 g of myocardial tissue.

Subscription Required. Please recommend JoVE to your librarian.

Discussion

We have described and validated a method to isolate viable myocytes from surgical samples of human ventricular myocardium. Starting from previously described protocols that had been successfully used to isolated cells from atrial surgical samples, the technique to allow separation of single viable myocytes from diseased ventricular myocardium was developed and fine tuned. Early reports showed that isolation of single cardiomyocytes from chunks of atrial and ventricular tissue selectively impaired repolarizing potassium currents, resulting in altered electrophysiological properties and responses to physiological stimuli8,24, whereas delivery of the enzyme containing buffer via coronary perfusion did not impair delayed rectifier currents in isolate cells25. Unfortunately, isolation of human ventricular myocytes from surgical specimens of ventricular myocardium cannot be performed by coronary perfusion since the integrity of coronary branches is lost, at variance with explanted hearts. Cardiomyocytes isolated from myocardial chunks using our method display a clear adaptation of action potential duration in response to changes of pacing frequency or to β adrenergic stimulation. In order for such responses to occur, the integrity of delayed rectifier potassium channels is required26-28, suggesting the overall integrity of those channels is not impaired by our isolation method. Additionally, cells isolated with our methods not only show regular electrophysiological responses (Figures 3 and 4), but also display calcium transients of the expected shape and duration (Figures 3 and 5) and regular sarcomeric organization (Figure 2) and shortening properties (not shown), suggesting that the overall structural integrity of those cells is preserved by this isolation procedure. The main advancement of this method over previous techniques is provided by the newly designed digestion device, which delivers gentle mechanical stirring of tissue chunks, allowing single cell separation without excessive damage. Moreover, the use of the digestion device allowed us to employ a lower concentration of enzymes in the cell isolation buffer; in particular we are using a much lower concentration of unselective protease in comparison with previously reported methods24. The device is custom made in our laboratory: building schematics are presented in Figure 8.

The simple design and structure makes it very easy to replicate for a successful outcome of this protocol. The legend to Figure 8 also describes the procedures required for producing the silicone brushes and building the scraping chamber. Owing to the advantages of the digestion device, a relatively high number of viable cells can be obtained from a relatively low amount of ventricular tissue (as low as 100 mg). A previously published method19 was shown to provide a calcium tolerant myocytes from small biopsies (even < 20 mg). However, the reported myocyte yield was very low and the authors did not show whether cells isolated with that method were feasible for characterization of intracellular calcium cycling and contractile function. This technique is potentially applicable to many surgical patients, since small portions of the interventricular septum are frequently excised during valve replacement procedures (e.g. aortic valve replacement). However, the crucial point to obtain a successful isolation is a rapid initiation of the procedure after sample collection from the operating room. Therefore, it is required for the cell laboratory to be in close proximity to the cardiac surgery clinic, in order for this technique to be fruitful. Additionally, a proper enzyme activity is also extremely important for a successful isolation. Since the unselective protease activity of each collagenase batch is usually not entirely tested, each lot is likely to perform differently during cell isolation. It is therefore essential to fine tune the final concentration of collagenase in order to achieve the best results. We suggest observing cell suspension under the microscope at each cycle, in order to be sure that viable cells start appearing at cycle 3. Early appearance of cells suggests excessive enzyme activity and prompts towards reduction of enzyme concentration; appearance of cells after cycle 3 suggests insufficient enzyme activity. In our experience, this is the most effective indicator of the correct enzyme concentration.

We have successfully used this method to obtain single cardiomyocytes from the inter-ventricular septum of HCM patients with left ventricular outflow tract obstruction undergoing surgical septal myectomy, as well as from non-failing non-hypertrophic surgical patients21. Results from that paper show that myocytes isolated with this method can be employed for complete electrophysiological evaluation with patch clamp techniques while simultaneously assessing EC-coupling abnormalities, by recording intracellular calcium dynamics with fluorescent dyes. The recording procedure here described allowed us to collect several physiological cell parameters with a single recording from each cell, thus producing a large amount of data with a limited number of cells and samples. Thanks to these advantages, this method has been successfully used to characterize the specific functional abnormalities of ventricular cardiomyocytes from HCM patients, as compared with non hypertrophic patients21. Abnormalities of ion currents and action potential duration, as well as kinetic anomalies od intracellular Ca2+ cycling were clearly identified using this technique, with high reproducibility. In addition, we have shown that treatment with a selective inhibitor of late Na+ current ranolazine significantly ameliorated the electrical and mechanical function of HCM myocardium, suggesting important therapeutic implications. This result highlights the possibility of employing human cardiomyocytes from patients with cardiac diseases for drug testing, allowing a direct translation of the results to the clinical setting. Indeed, results from the aforementioned work led to the development of a double blind clinical trial with ranolazine vs. placebo in patients with HCM29, which is currently ongoing.

Human cardiac specimen availability is relatively modest, even in specialized centers, and this may limit a wide applicability of this technique. Nonetheless, the quality of information that can be directly obtained from patient samples on disease related changes in cardiomyocyte function is comparable to that achievable from animal models of HCM and other cardiac diseases. Given the extensive differences between the physiology of human and murine cardiac myocytes, data from functional evaluation of human myocytes can be extremely valuable. As conclusion, we believe that future applications of this technique can significantly contribute to the knowledge of cardiac diseases, since our protocol provides the possibility to perform a complete set of functional assessments directly on cells from patient samples, with immediate translational value.

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

The authors declare that they have no competing financial interests.

Acknowledgments

This work was supported by the E.U. (STREP Project 241577 "BIG HEART," 7th European Framework Program, CP), Menarini International Operations Luxembourg (AM), Telethon GGP07133 (CP) and Gilead Sciences (AM).

Materials

Name Company Catalog Number Comments
Potassium phosphate monobasic (KH2PO4) Sigma-Aldrich P9791
Magnesium sulfate heptahydrate(MgSO4*7H2O) Sigma-Aldrich M1880
HEPES Sigma-Aldrich H3375
Adenosine Sigma-Aldrich A9251
D-(+)-Glucose Sigma-Aldrich G8270
Mannitol Sigma-Aldrich M4125
Taurine Sigma-Aldrich T0625
Potassium hydroxide (KOH) Sigma-Aldrich P5958
Sodium chloride (NaCl) Sigma-Aldrich S7653
Potassium chloride (KCl) Sigma-Aldrich P9333
Sodium phosphate dibasic (Na2HPO4) Sigma-Aldrich S7907
Sodium bicarbonate (NaHCO3) Sigma-Aldrich S6297
Potassium bicarbonate (KHCO3) Sigma-Aldrich 237205
Sodium pyruvate Sigma-Aldrich P2256
2,3-Butanedione monoxime Sigma-Aldrich B0753
Sodium hydroxide(NaOH) Sigma-Aldrich S8045
L-Glutamic acid monopotassium salt monohydrate Sigma-Aldrich 49601
Pyruvic acid Sigma-Aldrich 107360
3-Hydroxybutyric acid Sigma-Aldrich 166898
Adenosine 5′-triphosphate dipotassium salt dihydrate (K2-ATP) Sigma-Aldrich A8937
Creatine Sigma-Aldrich C0780
Succinic Acid Sigma-Aldrich S3674
Ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid (EGTA) Sigma-Aldrich E0396
Albumin from bovine serum Sigma-Aldrich A0281
Magnesium chloride (MgCl2) Sigma-Aldrich M8266
Collagenase from Clostridium histolyticum, Type V Sigma-Aldrich C9263
Proteinase, Bacterial, Type XXIV Sigma-Aldrich P8038
Calcium chloride solution, ~1 M in H2O Sigma-Aldrich 21115
Calcium chloride 0.1 M solution Sigma-Aldrich 53704
Potassium methanesulfonate Sigma-Aldrich 83000
FluoForte Reagent Enzo Life Sciences ENZ-52015
Powerload concentrate, 100X Life Technologies P10020
Perfusion Fast-Step System Warner Instruments VC-77SP
Amphotericin B solubilized Sigma-Aldrich A9528
Multiclamp 700B patch-clamp amplifier Molecular Devices
Digidata 1440A Molecular Devices
pClamp10.0  Molecular Devices
Digestion Device CUSTOM CUSTOM The device is custome made in our laboratory using plastic tubes, cast Sylgard and a motor; it is described in detail in Figure 1C-1D and in Figure7. We can provide further details if requested.
Silicone elastomer for the digestion device's brushes Dow Corning SYLGARD® 184
Variable speed rotating motor for the digestion device Crouzet Crouzet 178-4765
Mold for brushes casting N.A. N.A. The mold is custom made from standard PTFE 2.5 cm diameter rods.

DOWNLOAD MATERIALS LIST

References

  1. Dow, J. W., Harding, N. G., Powell, T. Isolated cardiac myocytes. I. Preparation of adult myocytes and their homology with the intact tissue. Cardiovascular Research. 15, 483-514 (1981).
  2. Dow, J. W., Harding, N. G., Powell, T. Isolated cardiac myocytes. II. Functional aspects of mature cells. Cardiovascular Research. 15, 549-579 (1981).
  3. Harding, S. E., et al. Species dependence of contraction velocity in single isolated cardiac myocytes. Cardioscience. 1, 49-53 (1990).
  4. Bustamante, J. O., Watanabe, T., Murphy, D. A., McDonald, T. F. Isolation of single atrial and ventricular cells from the human heart. Canadian Medical Association Journal. 126, 791-793 (1982).
  5. Beuckelmann, D. J., Nabauer, M., Erdmann, E. Characteristics of calcium-current in isolated human ventricular myocytes from patients with terminal heart failure. Journal of Molecular and Cellular Cardiology. 23, 929-937 (1991).
  6. Beuckelmann, D. J., Nabauer, M., Erdmann, E. Intracellular calcium handling in isolated ventricular myocytes from patients with terminal heart failure. Circulation. 85, 1046-1055 (1992).
  7. Cohen, N. M., Lederer, W. J. Calcium current in single human cardiac myocytes. Journal of Cardiovascular Electrophysiology. 4, 422-437 (1993).
  8. Beuckelmann, D. J., Nabauer, M., Erdmann, E. Alterations of K+ currents in isolated human ventricular myocytes from patients with terminal heart failure. Circulation Research. 73, 379-385 (1993).
  9. Virag, L., et al. The slow component of the delayed rectifier potassium current in undiseased human ventricular myocytes. Cardiovascular Research. 49, 790-797 (2001).
  10. Nanasi, P. P., Varro, A., Lathrop, D. A. Isolation of human ventricular and atrial cardiomyocytes: technical note. Cardioscience. 4, 111-116 (1993).
  11. Benitah, J. P., et al. Slow inward current in single cells isolated from adult human ventricles. Pflugers Archiv. European Journal of Physiology. 421, 176-187 (1992).
  12. Verkerk, A. O., et al. Ionic mechanism of delayed afterdepolarizations in ventricular cells isolated from human end-stage failing hearts. Circulation. 104, 2728-2733 (2001).
  13. Cerbai, E., et al. Characterization of the hyperpolarization-activated current, I(f), in ventricular myocytes from human failing heart. Circulation. 95, 568-571 (1997).
  14. Kohncke, C., et al. Isolation and kv channel recordings in murine atrial and ventricular cardiomyocytes. Journal of Visualized Experiments: JoVE. , (2013).
  15. Tomaselli, G. F., Marban, E. Electrophysiological remodeling in hypertrophy and heart failure. Cardiovascular Research. 42, 270-283 (1999).
  16. Maron, B. J. Hypertrophic cardiomyopathy: a systematic review. JAMA: The Journal of the American Medical Association. 287, 1308-1320 (2002).
  17. Olivotto, I., et al. The many faces of hypertrophic cardiomyopathy: from developmental biology to clinical practice. Journal of Cardiovascular Translational Research. 2, 349-367 (2009).
  18. Maron, M. S., et al. Hypertrophic cardiomyopathy is predominantly a disease of left ventricular outflow tract obstruction. Circulation. 114, 2232-2239 (2006).
  19. Peeters, G. A., et al. Method for isolation of human ventricular myocytes from single endocardial and epicardial biopsies. The American Journal of Physiology. 268, 1757-1764 (1995).
  20. Lippiat, J. D. Whole-cell recording using the perforated patch clamp technique. Methods Mol Biol. 491, 141-149 (2008).
  21. Coppini, R., et al. Late sodium current inhibition reverses electromechanical dysfunction in human hypertrophic cardiomyopathy. Circulation. 127, 575-584 (2013).
  22. Kuusisto, J., et al. Low-grade inflammation and the phenotypic expression of myocardial fibrosis in hypertrophic cardiomyopathy. Heart. 98, 1007-1013 (2012).
  23. Yan, G. X., et al. Phase 2 early afterdepolarization as a trigger of polymorphic ventricular tachycardia in acquired long-QT syndrome : direct evidence from intracellular recordings in the intact left ventricular wall. Circulation. 103, 2851-2856 (2001).
  24. Yue, L., Feng, J., Li, G. R., Nattel, S. Transient outward and delayed rectifier currents in canine atrium: properties and role of isolation methods. The American Journal of Physiology. 270, 2157-2168 (1996).
  25. Li, G. R., Feng, J., Yue, L., Carrier, M., Nattel, S. Evidence for two components of delayed rectifier K+ current in human ventricular myocytes. Circulation research. 78, 689-696 (1996).
  26. Viswanathan, P. C., Shaw, R. M., Rudy, Y. Effects of IKr and IKs heterogeneity on action potential duration and its rate dependence: a simulation study. Circulation. 99, 2466-2474 (1999).
  27. Volders, P. G., et al. Probing the contribution of IKs to canine ventricular repolarization: key role for beta-adrenergic receptor stimulation. Circulation. 107, 2753-2760 (2003).
  28. Sanguinetti, M. C., Jurkiewicz, N. K., Scott, A., Siegl, P. K. Isoproterenol antagonizes prolongation of refractory period by the class III antiarrhythmic agent E-4031 in guinea pig myocytes. Mechanism of action. Circulation Research. 68, 77-84 (1991).
  29. Coppini, R., et al. A translational approach to treatment of hypertrophic cardiomyopathy: pre-clinical rationale and design of a prospective randomized pilot trial with ranolazine. Circulation. 125, 1 (2012).

Tags

Cardiomyocytes Ventricular Myocardium Cardiac Surgery Electrophysiology Intracellular Calcium Cardiac Disease Cellular And Molecular Basis Therapeutic Targets Translational Value
Isolation and Functional Characterization of Human Ventricular Cardiomyocytes from Fresh Surgical Samples
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Coppini, R., Ferrantini, C., Aiazzi, More

Coppini, R., Ferrantini, C., Aiazzi, A., Mazzoni, L., Sartiani, L., Mugelli, A., Poggesi, C., Cerbai, E. Isolation and Functional Characterization of Human Ventricular Cardiomyocytes from Fresh Surgical Samples. J. Vis. Exp. (86), e51116, doi:10.3791/51116 (2014).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

PLAYLIST

  • Research • Medicine
    Estimation of Urinary Nanocrystals in Humans using Calcium Fluorophore Labeling and Nanoparticle Tracking Analysis
  • Research • Medicine
    Development and Evaluation of 3D-Printed Cardiovascular Phantoms for Interventional Planning and Training
  • Research • Medicine
    Human Fetal Blood Flow Quantification with Magnetic Resonance Imaging and Motion Compensation
  • Research • Medicine
    Digital Handwriting Analysis of Characters in Chinese Patients with Mild Cognitive Impairment
  • Research • Medicine
    Segmentation and Linear Measurement for Body Composition Analysis using Slice-O-Matic and Horos
  • Research • Medicine
    Magnetic Resonance Imaging of Multiple Sclerosis at 7.0 Tesla
  • Research • Medicine
    Real-Time Magnetic Resonance Guided Focused Ultrasound for Painful Bone Metastases
  • Research • Medicine
    Isolation of Viable Adipocytes and Stromal Vascular Fraction from Human Visceral Adipose Tissue Suitable for RNA Analysis and Macrophage Phenotyping
  • Research • Medicine
    Obtaining Quality Extended Field-of-View Ultrasound Images of Skeletal Muscle to Measure Muscle Fascicle Length
  • Research • Medicine
    Lung CT Segmentation to Identify Consolidations and Ground Glass Areas for Quantitative Assesment of SARS-CoV Pneumonia
  • Research • Medicine
    Electroretinogram Recording for Infants and Children under Anesthesia to Achieve Optimal Dark Adaptation and International Standards
  • Research • Medicine
    Measurement of Tissue Oxygenation Using Near-Infrared Spectroscopy in Patients Undergoing Hemodialysis
  • Research • Medicine
    Evaluation of Capnography Sampling Line Compatibility and Accuracy when Used with a Portable Capnography Monitor
  • Research • Medicine
    Simultaneous Laryngopharyngeal and Conventional Esophageal pH Monitoring
  • Research • Medicine
    Real-Time Monitoring of Neurocritical Patients with Diffuse Optical Spectroscopies
  • Research • Neuroscience
    Evaluating Postural Control and Lower-extremity Muscle Activation in Individuals with Chronic Ankle Instability
  • Research • Medicine
    Assessment of Dependence in Activities of Daily Living Among Older Patients in an Acute Care Unit
  • Research • Medicine
    Validated LC-MS/MS Panel for Quantifying 11 Drug-Resistant TB Medications in Small Hair Samples
  • Research • Medicine
    International Expert Consensus and Recommendations for Neonatal Pneumothorax Ultrasound Diagnosis and Ultrasound-guided Thoracentesis Procedure
  • Research • Biology
    A Finite Element Approach for Locating the Center of Resistance of Maxillary Teeth
  • Research • Medicine
    Lower Limb Biomechanical Analysis of Healthy Participants
  • Research • Neuroscience
    Assessing Early Stage Open-Angle Glaucoma in Patients by Isolated-Check Visual Evoked Potential
  • Research • Medicine
    Oral Health Assessment by Lay Personnel for Older Adults
  • Research • Medicine
    Determining and Controlling External Power Output During Regular Handrim Wheelchair Propulsion
  • Research • Medicine
    A Whole Body Dosimetry Protocol for Peptide-Receptor Radionuclide Therapy (PRRT): 2D Planar Image and Hybrid 2D+3D SPECT/CT Image Methods
  • Research • Medicine
    Measurement of Carotenoids in Perifovea using the Macular Pigment Reflectometer
  • Research • Medicine
    Assessment of Static Graviceptive Perception in the Roll-Plane using the Subjective Visual Vertical Paradigm
  • Research • Medicine
    Learning Modern Laryngeal Surgery in a Dissection Laboratory
  • Research • Medicine
    DIPLOMA Approach for Standardized Pathology Assessment of Distal Pancreatectomy Specimens
  • Research • Medicine
    A Computerized Functional Skills Assessment and Training Program Targeting Technology Based Everyday Functional Skills
  • Research • Medicine
    Imaging Features of Systemic Sclerosis-Associated Interstitial Lung Disease
  • Research • Medicine
    Integrating Augmented Reality Tools in Breast Cancer Related Lymphedema Prognostication and Diagnosis
  • Research • Medicine
    Ultrasonographic Assessment During Cardiopulmonary Resuscitation
  • Research • Medicine
    Measurement of the Hepatic Venous Pressure Gradient and Transjugular Liver Biopsy
  • Research • Medicine
    Patient Directed Recording of a Bipolar Three-Lead Electrocardiogram using a Smartwatch with ECG Function
  • Research • Medicine
    Traditional Trail Making Test Modified into Brand-new Assessment Tools: Digital and Walking Trail Making Test
  • Research • Medicine
    Use of Magnetic Resonance Imaging and Biopsy Data to Guide Sampling Procedures for Prostate Cancer Biobanking
  • Research • Medicine
    A Fluorescence-based Assay for Characterization and Quantification of Lipid Droplet Formation in Human Intestinal Organoids
  • Research • Medicine
    A Novel Non-invasive Method for the Detection of Elevated Intra-compartmental Pressures of the Leg
  • Research • Medicine
    Quantitative Mapping of Specific Ventilation in the Human Lung using Proton Magnetic Resonance Imaging and Oxygen as a Contrast Agent
  • Research • Neuroscience
    Portable Thermographic Screening for Detection of Acute Wallenberg's Syndrome
  • Research • Medicine
    Use of MRI-ultrasound Fusion to Achieve Targeted Prostate Biopsy
  • Research • Medicine
    Testing of all Six Semicircular Canals with Video Head Impulse Test Systems
  • Research • Medicine
    Protocol and Guidelines for Point-of-Care Lung Ultrasound in Diagnosing Neonatal Pulmonary Diseases Based on International Expert Consensus
  • Research • Neuroscience
    Bilateral Assessment of the Corticospinal Pathways of the Ankle Muscles Using Navigated Transcranial Magnetic Stimulation
  • Research • Medicine
    Targeting Gray Rami Communicantes in Selective Chemical Lumbar Sympathectomy
  • Research • Medicine
    Multi-Modal Home Sleep Monitoring in Older Adults
  • Research • Medicine
    Cardiac Magnetic Resonance for the Evaluation of Suspected Cardiac Thrombus: Conventional and Emerging Techniques
  • Research • Medicine
    Observational Study Protocol for Repeated Clinical Examination and Critical Care Ultrasonography Within the Simple Intensive Care Studies
  • Research • Medicine
    Measurements of Motor Function and Other Clinical Outcome Parameters in Ambulant Children with Duchenne Muscular Dystrophy
  • Research • Medicine
    Assessment of the Efficacy of An Osteopathic Treatment in Infants with Biomechanical Impairments to Suckling
  • Research • Medicine
    Quantification of Levator Ani Hiatus Enlargement by Magnetic Resonance Imaging in Males and Females with Pelvic Organ Prolapse
  • Research • Medicine
    Quantitative [18F]-Naf-PET-MRI Analysis for the Evaluation of Dynamic Bone Turnover in a Patient with Facetogenic Low Back Pain
  • Research • Medicine
    Generation of Human 3D Lung Tissue Cultures (3D-LTCs) for Disease Modeling
  • Research • Medicine
    Proton Therapy Delivery and Its Clinical Application in Select Solid Tumor Malignancies
  • Research • Medicine
    Combining Volumetric Capnography And Barometric Plethysmography To Measure The Lung Structure-function Relationship
  • Research • Medicine
    Two-Dimensional X-Ray Angiography to Examine Fine Vascular Structure Using a Silicone Rubber Injection Compound
  • Research • Medicine
    Preparation, Procedures and Evaluation of Platelet-Rich Plasma Injection in the Treatment of Knee Osteoarthritis
  • Research • Medicine
    Cardiac Magnetic Resonance Imaging at 7 Tesla
  • Research • Medicine
    Semi-quantitative Assessment Using [18F]FDG Tracer in Patients with Severe Brain Injury
  • Research • Medicine
    Handheld Metal Detector Screening for Metallic Foreign Body Ingestion in Children
  • Research • Medicine
    Conducting Maximal and Submaximal Endurance Exercise Testing to Measure Physiological and Biological Responses to Acute Exercise in Humans
  • Research • Medicine
    A Metadata Extraction Approach for Clinical Case Reports to Enable Advanced Understanding of Biomedical Concepts
  • Research • Medicine
    Autonomic Function Following Concussion in Youth Athletes: An Exploration of Heart Rate Variability Using 24-hour Recording Methodology
  • Research • Medicine
    Hydra, a Computer-Based Platform for Aiding Clinicians in Cardiovascular Analysis and Diagnosis
  • Research • Medicine
    Objective Nociceptive Assessment in Ventilated ICU Patients: A Feasibility Study Using Pupillometry and the Nociceptive Flexion Reflex
  • Research • Medicine
    'Boden Food Plate': Novel Interactive Web-based Method for the Assessment of Dietary Intake
  • Research • Medicine
    Anogenital Distance and Perineal Measurements of the Pelvic Organ Prolapse (POP) Quantification System
  • Research • Medicine
    Bedside Ultrasound for Guiding Fluid Removal in Patients with Pulmonary Edema: The Reverse-FALLS Protocol
  • Research • Medicine
    Muscle Imbalances: Testing and Training Functional Eccentric Hamstring Strength in Athletic Populations
  • Research • Medicine
    Isolation of Primary Human Decidual Cells from the Fetal Membranes of Term Placentae
  • Research • Medicine
    Skeletal Muscle Neurovascular Coupling, Oxidative Capacity, and Microvascular Function with 'One Stop Shop' Near-infrared Spectroscopy
  • Research • Medicine
    Collecting Hair Samples for Hair Cortisol Analysis in African Americans
  • Research • Medicine
    In Vivo Morphometric Analysis of Human Cranial Nerves Using Magnetic Resonance Imaging in Menière's Disease Ears and Normal Hearing Ears
  • Research • Medicine
    Measuring the Carotid to Femoral Pulse Wave Velocity (Cf-PWV) to Evaluate Arterial Stiffness
  • Research • Medicine
    Standardized Measurement of Nasal Membrane Transepithelial Potential Difference (NPD)
  • Research • Medicine
    Taste Exam: A Brief and Validated Test
  • Research • Medicine
    Absorption of Nasal and Bronchial Fluids: Precision Sampling of the Human Respiratory Mucosa and Laboratory Processing of Samples
  • Research • Medicine
    Methodology for Sputum Induction and Laboratory Processing
  • Research • Medicine
    Electrophysiological Measurement of Noxious-evoked Brain Activity in Neonates Using a Flat-tip Probe Coupled to Electroencephalography
  • Research • Medicine
    A Detailed Protocol for Physiological Parameters Acquisition and Analysis in Neurosurgical Critical Patients
  • Research • Medicine
    Oral Biofilm Sampling for Microbiome Analysis in Healthy Children
  • Research • Medicine
    Using Retinal Imaging to Study Dementia
  • Research • Medicine
    Application of an Amplitude-integrated EEG Monitor (Cerebral Function Monitor) to Neonates
  • Research • Medicine
    3D Ultrasound Imaging: Fast and Cost-effective Morphometry of Musculoskeletal Tissue
  • Research • Medicine
    The 4-vessel Sampling Approach to Integrative Studies of Human Placental Physiology In Vivo
  • Research • Medicine
    A Component-resolved Diagnostic Approach for a Study on Grass Pollen Allergens in Chinese Southerners with Allergic Rhinitis and/or Asthma
  • Research • Medicine
    A Novel Method: Super-selective Adrenal Venous Sampling
  • Research • Medicine
    A Method for Quantifying Upper Limb Performance in Daily Life Using Accelerometers
  • Research • Medicine
    Non-invasive Assessments of Subjective and Objective Recovery Characteristics Following an Exhaustive Jump Protocol
  • Research • Medicine
    Experimental Protocol of a Three-minute, All-out Arm Crank Exercise Test in Spinal-cord Injured and Able-bodied Individuals
  • Research • Medicine
    Phosphorus-31 Magnetic Resonance Spectroscopy: A Tool for Measuring In Vivo Mitochondrial Oxidative Phosphorylation Capacity in Human Skeletal Muscle
  • Research • Medicine
    Assessment of Pulmonary Capillary Blood Volume, Membrane Diffusing Capacity, and Intrapulmonary Arteriovenous Anastomoses During Exercise
  • Research • Medicine
    Assessment of Child Anthropometry in a Large Epidemiologic Study
  • Research • Medicine
    Video Movement Analysis Using Smartphones (ViMAS): A Pilot Study
  • Research • Medicine
    Network Analysis of Foramen Ovale Electrode Recordings in Drug-resistant Temporal Lobe Epilepsy Patients
  • Research • Medicine
    A Model to Simulate Clinically Relevant Hypoxia in Humans
  • Research • Medicine
    Interictal High Frequency Oscillations Detected with Simultaneous Magnetoencephalography and Electroencephalography as Biomarker of Pediatric Epilepsy
  • Research • Medicine
    Induction and Assessment of Exertional Skeletal Muscle Damage in Humans
  • Research • Medicine
    A Detailed Protocol for Perspiration Monitoring Using a Novel, Small, Wireless Device
  • Research • Medicine
    Drug-Induced Sleep Endoscopy (DISE) with Target Controlled Infusion (TCI) and Bispectral Analysis in Obstructive Sleep Apnea
  • Research • Medicine
    Integrated Compensatory Responses in a Human Model of Hemorrhage
  • Research • Medicine
    Transthoracic Speckle Tracking Echocardiography for the Quantitative Assessment of Left Ventricular Myocardial Deformation
  • Research • Medicine
    Impression Cytology of the Lid Wiper Area
  • Research • Behavior
    A Protocol of Manual Tests to Measure Sensation and Pain in Humans
  • Research • Medicine
    Unbiased Deep Sequencing of RNA Viruses from Clinical Samples
  • Research • Medicine
    A Choroid Plexus Epithelial Cell-based Model of the Human Blood-Cerebrospinal Fluid Barrier to Study Bacterial Infection from the Basolateral Side
  • Research • Medicine
    Isolation and Profiling of MicroRNA-containing Exosomes from Human Bile
  • Research • Medicine
    Generation of Microtumors Using 3D Human Biogel Culture System and Patient-derived Glioblastoma Cells for Kinomic Profiling and Drug Response Testing
  • Research • Medicine
    Ultrasound Assessment of Endothelial Function: A Technical Guideline of the Flow-mediated Dilation Test
  • Research • Medicine
    Using a Laminating Technique to Perform Confocal Microscopy of the Human Sclera
  • Research • Medicine
    Intravenous Endotoxin Challenge in Healthy Humans: An Experimental Platform to Investigate and Modulate Systemic Inflammation
  • Research • Medicine
    Modeling and Simulations of Olfactory Drug Delivery with Passive and Active Controls of Nasally Inhaled Pharmaceutical Aerosols
  • Research • Medicine
    Exosomal miRNA Analysis in Non-small Cell Lung Cancer (NSCLC) Patients' Plasma Through qPCR: A Feasible Liquid Biopsy Tool
  • Research • Medicine
    A Multimodal Imaging- and Stimulation-based Method of Evaluating Connectivity-related Brain Excitability in Patients with Epilepsy
  • Research • Medicine
    Measuring Cardiac Autonomic Nervous System (ANS) Activity in Toddlers - Resting and Developmental Challenges
  • Research • Medicine
    Using Saccadometry with Deep Brain Stimulation to Study Normal and Pathological Brain Function
  • Research • Medicine
    Quantitative Fundus Autofluorescence for the Evaluation of Retinal Diseases
  • Research • Medicine
    Diagnosis of Musculus Gastrocnemius Tightness - Key Factors for the Clinical Examination
  • Research • Medicine
    Stereo-Electro-Encephalo-Graphy (SEEG) With Robotic Assistance in the Presurgical Evaluation of Medical Refractory Epilepsy: A Technical Note
  • Research • Medicine
    Quantitative Magnetic Resonance Imaging of Skeletal Muscle Disease
  • Research • Medicine
    Transcutaneous Microcirculatory Imaging in Preterm Neonates
  • Research • Medicine
    Using an Ingestible Telemetric Temperature Pill to Assess Gastrointestinal Temperature During Exercise
  • Research • Medicine
    Design, Fabrication, and Administration of the Hand Active Sensation Test (HASTe)
  • Research • Medicine
    MRI-guided dmPFC-rTMS as a Treatment for Treatment-resistant Major Depressive Disorder
  • Research • Medicine
    Functional Human Liver Preservation and Recovery by Means of Subnormothermic Machine Perfusion
  • Research • Medicine
    A Multicenter MRI Protocol for the Evaluation and Quantification of Deep Vein Thrombosis
  • Research • Medicine
    Determining The Electromyographic Fatigue Threshold Following a Single Visit Exercise Test
  • Research • Medicine
    Use of Electromagnetic Navigational Transthoracic Needle Aspiration (E-TTNA) for Sampling of Lung Nodules
  • Research • Medicine
    Trabecular Meshwork Response to Pressure Elevation in the Living Human Eye
  • Research • Medicine
    In Vivo, Percutaneous, Needle Based, Optical Coherence Tomography of Renal Masses
  • Research • Medicine
    Establishment of Human Epithelial Enteroids and Colonoids from Whole Tissue and Biopsy
  • Research • Medicine
    Human Brown Adipose Tissue Depots Automatically Segmented by Positron Emission Tomography/Computed Tomography and Registered Magnetic Resonance Images
  • Research • Medicine
    Preparation and Respirometric Assessment of Mitochondria Isolated from Skeletal Muscle Tissue Obtained by Percutaneous Needle Biopsy
  • Research • Medicine
    A Methodological Approach to Non-invasive Assessments of Vascular Function and Morphology
  • Research • Medicine
    Isolation and Immortalization of Patient-derived Cell Lines from Muscle Biopsy for Disease Modeling
  • Research • Medicine
    State of the Art Cranial Ultrasound Imaging in Neonates
  • Research • Medicine
    Measurement of Dynamic Scapular Kinematics Using an Acromion Marker Cluster to Minimize Skin Movement Artifact
  • Research • Medicine
    The Supraclavicular Fossa Ultrasound View for Central Venous Catheter Placement and Catheter Change Over Guidewire
  • Research • Medicine
    Ultrasound Assessment of Endothelial-Dependent Flow-Mediated Vasodilation of the Brachial Artery in Clinical Research
  • Research • Medicine
    Tracking the Mammary Architectural Features and Detecting Breast Cancer with Magnetic Resonance Diffusion Tensor Imaging
  • Research • Medicine
    A Neuroscientific Approach to the Examination of Concussions in Student-Athletes
  • Research • Medicine
    DTI of the Visual Pathway - White Matter Tracts and Cerebral Lesions
  • Research • Medicine
    Collection, Isolation, and Flow Cytometric Analysis of Human Endocervical Samples
  • Research • Medicine
    Fundus Photography as a Convenient Tool to Study Microvascular Responses to Cardiovascular Disease Risk Factors in Epidemiological Studies
  • Research • Medicine
    A Multi-Modal Approach to Assessing Recovery in Youth Athletes Following Concussion
  • Research • Medicine
    Clinical Assessment of Spatiotemporal Gait Parameters in Patients and Older Adults
  • Research • Medicine
    Multi-electrode Array Recordings of Human Epileptic Postoperative Cortical Tissue
  • Research • Medicine
    Collection and Extraction of Saliva DNA for Next Generation Sequencing
  • Research • Medicine
    Fast and Accurate Exhaled Breath Ammonia Measurement
  • Research • Medicine
    Developing Neuroimaging Phenotypes of the Default Mode Network in PTSD: Integrating the Resting State, Working Memory, and Structural Connectivity
  • Research • Medicine
    Two Methods for Establishing Primary Human Endometrial Stromal Cells from Hysterectomy Specimens
  • Research • Medicine
    Assessment of Vascular Function in Patients With Chronic Kidney Disease
  • Research • Medicine
    Coordinate Mapping of Hyolaryngeal Mechanics in Swallowing
  • Research • Medicine
    Network Analysis of the Default Mode Network Using Functional Connectivity MRI in Temporal Lobe Epilepsy
  • Research • Medicine
    EEG Mu Rhythm in Typical and Atypical Development
  • Research • Medicine
    The Multiple Sclerosis Performance Test (MSPT): An iPad-Based Disability Assessment Tool
  • Research • Medicine
    Isolation and Functional Characterization of Human Ventricular Cardiomyocytes from Fresh Surgical Samples
  • Research • Medicine
    Dynamic Visual Tests to Identify and Quantify Visual Damage and Repair Following Demyelination in Optic Neuritis Patients
  • Research • Medicine
    Primary Culture of Human Vestibular Schwannomas
  • Research • Medicine
    Utility of Dissociated Intrinsic Hand Muscle Atrophy in the Diagnosis of Amyotrophic Lateral Sclerosis
  • Research • Medicine
    Lesion Explorer: A Video-guided, Standardized Protocol for Accurate and Reliable MRI-derived Volumetrics in Alzheimer's Disease and Normal Elderly
  • Research • Medicine
    Pulse Wave Velocity Testing in the Baltimore Longitudinal Study of Aging
  • Research • Medicine
    Isolation, Culture, and Imaging of Human Fetal Pancreatic Cell Clusters
  • Research • Medicine
    3D-Neuronavigation In Vivo Through a Patient's Brain During a Spontaneous Migraine Headache
  • Research • Medicine
    A Novel Application of Musculoskeletal Ultrasound Imaging
  • Research • Medicine
    Computerized Dynamic Posturography for Postural Control Assessment in Patients with Intermittent Claudication
  • Research • Medicine
    Collecting Saliva and Measuring Salivary Cortisol and Alpha-amylase in Frail Community Residing Older Adults via Family Caregivers
  • Research • Medicine
    Diffusion Tensor Magnetic Resonance Imaging in the Analysis of Neurodegenerative Diseases
  • Research • Medicine
    Transcriptomic Analysis of Human Retinal Surgical Specimens Using jouRNAl
  • Research • Medicine
    Improved Protocol For Laser Microdissection Of Human Pancreatic Islets From Surgical Specimens
  • Research • Medicine
    Evaluation of Respiratory Muscle Activation Using Respiratory Motor Control Assessment (RMCA) in Individuals with Chronic Spinal Cord Injury
  • Research • Medicine
    Minimal Erythema Dose (MED) Testing
  • Research • Medicine
    Measuring Cardiac Autonomic Nervous System (ANS) Activity in Children
  • Research • Medicine
    Collecting And Measuring Wound Exudate Biochemical Mediators In Surgical Wounds
  • Research • Medicine
    A Research Method For Detecting Transient Myocardial Ischemia In Patients With Suspected Acute Coronary Syndrome Using Continuous ST-segment Analysis
  • Research • Medicine
    Using a Chemical Biopsy for Graft Quality Assessment
  • Research • Medicine
    Characterizing Exon Skipping Efficiency in DMD Patient Samples in Clinical Trials of Antisense Oligonucleotides
  • Research • Medicine
    In Vitro Assessment of Cardiac Function Using Skinned Cardiomyocytes
  • Research • Medicine
    Normothermic Ex Situ Heart Perfusion in Working Mode: Assessment of Cardiac Function and Metabolism
  • Research • Medicine
    Evaluation of Vascular Control Mechanisms Utilizing Video Microscopy of Isolated Resistance Arteries of Rats
  • Research • Medicine
    Bronchoalveolar Lavage (BAL) for Research; Obtaining Adequate Sample Yield
  • Research • Medicine
    Non-invasive Optical Measurement of Cerebral Metabolism and Hemodynamics in Infants
  • Research • Medicine
    Tilt Testing with Combined Lower Body Negative Pressure: a "Gold Standard" for Measuring Orthostatic Tolerance
  • Research • Medicine
    Driving Simulation in the Clinic: Testing Visual Exploratory Behavior in Daily Life Activities in Patients with Visual Field Defects
  • Research • Medicine
    Isolation, Characterization and Comparative Differentiation of Human Dental Pulp Stem Cells Derived from Permanent Teeth by Using Two Different Methods
  • Research • Medicine
    Portable Intermodal Preferential Looking (IPL): Investigating Language Comprehension in Typically Developing Toddlers and Young Children with Autism
  • Research • Medicine
    Intraoperative Detection of Subtle Endometriosis: A Novel Paradigm for Detection and Treatment of Pelvic Pain Associated with the Loss of Peritoneal Integrity
  • Research • Medicine
    The Use of Primary Human Fibroblasts for Monitoring Mitochondrial Phenotypes in the Field of Parkinson's Disease
  • Research • Medicine
    Collection Protocol for Human Pancreas
  • Research • Medicine
    The α-test: Rapid Cell-free CD4 Enumeration Using Whole Saliva
  • Research • Medicine
    The Measurement and Treatment of Suppression in Amblyopia
  • Research • Medicine
    Corneal Donor Tissue Preparation for Endothelial Keratoplasty
  • Research • Medicine
    Quantification of Atherosclerotic Plaque Activity and Vascular Inflammation using [18-F] Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography (FDG-PET/CT)
  • Research • Medicine
    Eye Tracking Young Children with Autism
  • Research • Medicine
    Doppler Optical Coherence Tomography of Retinal Circulation
  • Research • Medicine
    Utilizing Transcranial Magnetic Stimulation to Study the Human Neuromuscular System
  • Research • Medicine
    Detection and Genogrouping of Noroviruses from Children's Stools By Taqman One-step RT-PCR
  • Research • Medicine
    Method to Measure Tone of Axial and Proximal Muscle
  • Research • Medicine
    The Trier Social Stress Test Protocol for Inducing Psychological Stress
  • Research • Medicine
    Probing the Brain in Autism Using fMRI and Diffusion Tensor Imaging
  • Research • Medicine
    Multifocal Electroretinograms
  • Research • Medicine
    Isolation of Human Islets from Partially Pancreatectomized Patients
  • Research • Medicine
    Examining the Characteristics of Episodic Memory using Event-related Potentials in Patients with Alzheimer's Disease
  • Research • Medicine
    Magnetic Resonance Imaging Quantification of Pulmonary Perfusion using Calibrated Arterial Spin Labeling
  • Research • Medicine
    Manual Muscle Testing: A Method of Measuring Extremity Muscle Strength Applied to Critically Ill Patients
  • Research • Medicine
    Expired CO2 Measurement in Intubated or Spontaneously Breathing Patients from the Emergency Department
  • Research • Medicine
    A Protocol for Comprehensive Assessment of Bulbar Dysfunction in Amyotrophic Lateral Sclerosis (ALS)
  • Research • Medicine
    An Investigation of the Effects of Sports-related Concussion in Youth Using Functional Magnetic Resonance Imaging and the Head Impact Telemetry System
  • Research • Medicine
    Corneal Confocal Microscopy: A Novel Non-invasive Technique to Quantify Small Fibre Pathology in Peripheral Neuropathies
  • Research • Medicine
    Methods to Quantify Pharmacologically Induced Alterations in Motor Function in Human Incomplete SCI
  • Research • Medicine
    Multispectral Real-time Fluorescence Imaging for Intraoperative Detection of the Sentinel Lymph Node in Gynecologic Oncology
  • Research • Medicine
    Technique to Collect Fungiform (Taste) Papillae from Human Tongue
  • Research • Medicine
    Assessing Endothelial Vasodilator Function with the Endo-PAT 2000
  • Research • Medicine
    Making Sense of Listening: The IMAP Test Battery
  • Research • Medicine
    An Experimental Paradigm for the Prediction of Post-Operative Pain (PPOP)
  • Research • Biology
    Bioelectric Analyses of an Osseointegrated Intelligent Implant Design System for Amputees
  • Research • Biology
    Demonstration of Cutaneous Allodynia in Association with Chronic Pelvic Pain
  • Get cutting-edge science videos from JoVE sent straight to your inbox every month.

    Waiting X
    Simple Hit Counter