Summary

前体mRNA底物的3'末端切割:用无细胞体系中的RNA加工反应分析<em>在体外</em

Published: May 03, 2014
doi:

Summary

RNA聚合酶II合成延伸超过所述成熟mRNA的3'末端的前体RNA。的成熟RNA的末端cotranscriptionally生成的,在由RNA序列决定的一个部位,通过裂解复合物的内切核酸酶的活性。在这里,我们详细研究裂解反应在体外的方法。

Abstract

哺乳动物mRNA的3'末端不被由RNA聚合酶II(RNPII)突然终止转录的形成。相反,RNPII合成前体的mRNA之外的成熟RNA的末端,内切酶活性的主动过程,需要在特定的位点。前体RNA切割的CA二核苷酸后通常会发生10-30个核苷酸下游的共识polyA位点(AAUAAA)。从裂解复合物,约800 kDa的多因子蛋白复合物,蛋白质完成这个特定的核酸酶活性。特定的RNA序列的上游和多聚A位点的下游控制裂解复合物的募集。紧接在切割后,mRNA前由聚腺苷酸聚合酶(PAP)多聚腺苷酸化,以产生成熟的稳定的RNA消息。

一种RNA转录物的3'端的处理可以使用移动的核提取物与特定的放射性标记的RNA底物进行研究。总之,长32 </ SUP> P-标记的未裂解的前体RNA被孵育体外核提取物和裂解是通过凝胶电泳和放射自显影评估。当适当的切割发生在较短的5'裂解产物进行检测和定量。在这里,我们描述了裂解分析法详细使用,作为一个例子,对HIV-1的mRNA的3'末端加工。

Introduction

最成熟的真核生物的RNA消息(mRNA的)的生物合成需要几个转录后修饰,如封盖,剪接和多聚腺苷酸化。这些修饰通常耦合,以确保正确的处理1,并强烈增加mRNA的稳定性。

由聚(A)聚合酶(PAP)2-4 3'哺乳动物预mRNA的末端形成由新生RNA,随后加入腺苷酸残基到5的内切核苷酸裂解产生'裂解产物。在哺乳动物中,断裂是由多组分蛋白复合物完成约800 kDa的,是组装在特定的预RNA序列。所述聚(A)信号序列,一个高度保守的典型六核苷酸序列AAUAAA,引导切割位点在约10-30个核苷酸的下游。这个网站是专门由切割和多聚腺苷酸化特异性因子(CPSF)及73 kD的亚基确认CSPF包含内切核酸酶的活性。裂解刺激因子(CSTF)结合更加堕落GU-或U丰富的元素序列中的poly(A)位点下游。还需要裂解是哺乳动物裂解因子I(CFIM)和哺乳动物裂解因子II(CFII)。 CFIM结合上游序列中的元素(使用)的具体UGUA(N)的网站,已经被定义为一些基因,似乎参与重要的生理过程5-8。

在体外实验中 ,RNA加工反应通过使用放射性标记的RNA底物9-12常用分析。这些可以通过从噬菌体启动子的T7或SP6失控转录来合成。当研究一种多聚腺苷酸化位点尚未之前其特征在于,它需要使用的基因组DNA,而不是基因产生的RNA底物,作为重要的下游序列中可能不存在于cDNA的。设计底物,包括至少150个核苷酸upstrea米和50从上成熟的mRNA切割位点/结束nt的下游。裂解产物迁移比基材快;然而,因为其他片段可以通过非特异性核酸酶作用而生成的,该反应的特异性具有由其上的正确处理的信号序列依赖性进行验证。因此,RNA底物具有在AAUAAA序列( 例如,AAGAAA)的点突变可作为阴性对照的裂解反应。

由于少量的放射性标记的RNA被用于裂解反应中,存在于高丰度在大多数核提取核糖核酸酶可以是有问题的,并限制对提取物的制备起始材料的选择范围。 HeLa细胞中往往含有内源性核糖核酸酶水平低,因而在这些测定中表现良好。

在RNA底物在体内体外的信使核糖核酸是紧接着的poly(A)另外,周四S中的裂解的中间不存在可检测量。因此,研究一个特定的RNA序列或涉及的裂解反应的蛋白质,实验是在防止多聚腺苷酸化的发生条件进行。有乳沟的多聚腺苷酸化无依赖性,反之亦然,所以人能阻止多聚腺苷酸化而不伤害裂解反应。因此,ATP被替换为缺少3'羟基基团,以便只有一个单核苷酸可以在多聚(A)位点被结合并可以被检测到刚切割的RNA链终止类似物。

由于复杂性和这种类型的检测的特殊性程度高,我们描述了一个详细的视频协议由前体mRNA的体外切割/聚(A)机械研究核酸内切裂解。我们描述了如何准备主管核提取物,产生放射性标记的RNA底物,进行裂解反应,并分析和解释结果ING产品。 图1显示了HIV-1的前mRNA的3'末端也可以用于裂解分析法进行编码的RNA底物的例子。艾滋病毒RNA基因组的3'端是由许多重要的调控序列,如聚(A)位点,一个G+ü丰富的地区,以及使用的元素,这些都是必要的病毒mRNA转录13高效成熟。在这个例子中,我们所期望的输入RNA底物为338 nt的,一经裂解237 nt的。如果多聚腺苷酸化被允许发生,产品一抹黑将237和437个核苷酸之间被观察到。

Protocol

1,适应贴壁细胞悬浮成 (这是可选步骤。悬浮细胞通常做出更好的核提取物,但是也可以使用在平板上生长的细胞。) 适应贴壁细胞使用Joklik改性的MEM补充有5-10%新生小牛血清或胎牛血清和1%L-谷氨酰胺生长在悬浮液:青霉素 – 链霉素。繁殖细胞转瓶在37℃的过滤器盖,用8%的CO 2。 当适应细胞,开始用100毫升的500毫升旋转瓶中。保持最小的0.3×10 <su…

Representative Results

将RNA的poly(A)的HIV-1的部位( 图2)的裂解试验的代表性结果。我们可以观察到的未裂解的RNA底物,它是最慢迁移带在凝胶的顶部。具体的裂解产物是运行在上面的预期大小的凝胶更快最激烈的较短片段的带,并且是从mutpoly(A)的控制,其中包含多聚腺苷酸序列(mutPolyA)+ RNA的点突变的裂解测定法特别缺席基材。输入基板的降解产物有时可观察到。裂解活性的定量可以通过未切割?…

Discussion

体外前体mRNA 3'裂解反应,在HeLa细胞核提取物或从这些提取物分馏裂解因素进行,使识别的核心裂解因素,其主要复合物16-21。许多与这些因素相关的更多的蛋白质最近已确定了22个,并在体外的反应可能会继续阐明这些蛋白是如何有助于反应轻。也许是因为在体内的反应似乎是cotranscriptional 23,或者是因为一些影响因素可能提取和透析过程中丢失时…

Disclosures

The authors have nothing to disclose.

Acknowledgements

SV是感谢来自美国国立卫生研究院K22AI077353和Landenberger基金会的资助。 KR感激来自美国国立卫生研究院(5SC1GM083754)承认资金。

Materials

1L Celstir Flask Wheaton 356884 Different sizes available
4 Position Slow Speed Stirrer VWR 12621-076
Swinging Bucket Centrifuge Beckman Coulter Allegra x-15R with SX4500 Rotor
Ultra Centrifuge Beckman Coulter Optima L-100 XP Ultra with SW41 Rotor
Table Top Centrifuge 5417R Eppendorf Refridgerated
Thermomixer incubator Eppendorf
250ml Conicle Tubes Corning 430776
50ml Conicle Tubes BD Falcon 352098
Ultra-clear Centrifuge Tubes Beckman Coulter 344059
JOKLIK Modified MEM Lonza 04-719Q
Fetal Bovine Serum Atlas  F-0500-A Heat inactivated
L-Glut:Pen:Strep Gemini Bio-Products 400-110
1M Tris-HCl pH 8.0 Mediatech 46-031-CM
Magnesium Chloride Fisher BP214-500
Potassium Chloride MP Biomedicals 194844
HEPES Fisher BP310-500
DTT Alexis Biomedicals 280-001-G-010
Glycerol Fisher BP229-4
5M Sodium Chloride Solution Mediatech 46-032-CV
EDTA 0.5M Solution Sigma-Aldrich E7889-100ml
EDTA Fisher BP120-500
PMSF Thermo Scientific 36978
Ammonium Sulfate Fisher A702-500
cOmplete EDTA-Free Protease inhibitor cocktail tablets Roche 04 693 132 001
Slide-A-Lyzer Dialysis Cassettes Kit Thermo Scientific 66372 MWCO 7000 0.5ml-3ml
15ml Dounce Tissue grinder set Sigma-Aldrich D9938-1SET Different sizes available
Expand High Fidelity PCR Kit Roche 11 732 650 001
10mM dNTP Mix Invitrogen Y02256 10mM each nucleotide
MaxiScript SP6/T7 Kit Ambion AM1322
m7G(5')ppp(5') G RNA Cap New England Biolabs S1404S
Century Marker Template Plus Ambion AM7782
Easytides UTP [alpha-32p]-250uCi Perkin Elmer BLU507H250UC
Gel loading buffer II Ambion 8546G
DEPC treated water Ambion AM9906
10x TAE Fisher BP13354
10x TBE Ameresco Life Sciences 0658-4L
10x PBS Fisher BP399-20
Urea Fisher BP169-212
Ammonium Persulfate Bio-Rad 161-0700
TEMED Fisher BP150-20
Ammonium Acetate Fisher A637-500
40% 19:1 Acrylamide:Bis-acrylamide Bio-Rad 161-0144
Glycogen Roche 10 901 393 001
100% Absolute Ethanol 200 Proof Acros 61509-0040
Acid Phenol-Chloroform Ambion 9720 For RNA
Scintilation Fluid Fisher SX18-4
Rnase Inhibitor Promega N261B
Poly (Vinyl alcohol) PVA Sigma-Aldrich P8136-250G
Creatine Phosphate Calbiochem 2380
100mM dATP Fisher BP2560-4
SDS Acros 23042-5000
Proteinase K Fisher BP1700-100
Adjustable Sequencing Unit Sigma-Aldrich Z351881-1EA
Binder Clips Office Depot 838-056
20cmx42cm glass plates Sigma-Aldrich Z352543 1SET
20cmx22cm glass plates Sigma-Aldrich Z35252-7 1SET
20cmx42cm Aluminum Cooling Plates Sigma-Aldrich Z352667 1EA
0.4mmx22cm Spacers Sigma-Aldrich Z35230-6 1SET
0.4mmx42cm Spacers Sigma-Aldrich Z352314-1 1SET
8-well Comb Sigma-Aldrich Z35195-4 1EA
16-well Comb Sigma-Aldrich Z351962 1EA
32-well Comb Sigma-Aldrich Z351970 1EA
Gel Repel Coating C.B.S. Scientific SGR-0401 or SGR-0101 for individual bottle
Gel Loading Tips Rainin GT-10-4 0.1-10uL
Sequencing PowerPac HV Bio-Rad PowerPac HV 5000V/500mA/400W
Gel Dryer Model 583 Bio-Rad Model 583
Hydrotech Vacuum Pump for gel dryer Bio-Rad
Glogos II Glow-in-the-dark Markers Agilent 420201
Film 8×10 Midsci BX810
Film 14×17 Phenix F-BX1417
Autoradiography Cassette Fisher FBCA 1417 8×10 size available

References

  1. Maniatis, T., Reed, R. An extensive network of coupling among gene expression machines. Nature. 416, 499-506 (2002).
  2. Wahle, E., Ruegsegger, U. 3′-End processing of pre-mRNA in eukaryotes. FEMS microbiology reviews. 23, 277-295 (1999).
  3. Colgan, D. F., Manley, J. L. Mechanism and regulation of mRNA polyadenylation. Genes Dev. 11, 2755-2766 (1997).
  4. Matoulkova, E., Michalova, E., Vojtesek, B., Hrstka, R. The role of the 3′ untranslated region in post-transcriptional regulation of protein expression in mammalian cells. RNA biology. 9, 563-576 (2012).
  5. Danckwardt, S., et al. The prothrombin 3’end formation signal reveals a unique architecture that is sensitive to thrombophilic gain-of-function mutations. Blood. 104, 428-435 (2004).
  6. Moreira, A., et al. The upstream sequence element of the C2 complement poly(A) signal activates mRNA 3′ end formation by two distinct mechanisms. Genes Dev. 12, 2522-2534 (1998).
  7. Hall-Pogar, T., Zhang, H., Tian, B., Lutz, C. S. Alternative polyadenylation of cyclooxygenase-2. Nucleic Acids Res. 33, 2565-2579 (2005).
  8. Brackenridge, S., Proudfoot, N. J. Recruitment of a basal polyadenylation factor by the upstream sequence element of the human lamin B2 polyadenylation signal. Molecular and Cellular Biology. 20, 2660-2669 (2000).
  9. Moore, C. L., Sharp, P. A. Accurate cleavage and polyadenylation of exogenous RNA substrate. Cell. 41, 845-855 (1985).
  10. Gilmartin, G. M. . mRNA formation and function. , 79-98 (1997).
  11. Wahle, E., Keller, W. . RNA Processing. Vol. II. , 1-34 (1994).
  12. Chabot, B. . RNA Processing Vol I. 1, 1-29 (1994).
  13. Valente, S. T., et al. HIV-1 mRNA 3′ end processing is distinctively regulated by eIF3f, CDK11, and splice factor 9G8. Mol Cell. 36, 279-289 (2009).
  14. Dignam, J. D., Lebovitz, R. M., Roeder, R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11, 1475-1489 (1983).
  15. Aurup, H., Williams, D. M., Eckstein, F. 2′-Fluoro- and 2′-amino-2′-deoxynucleoside 5′-triphosphates as substrates for T7 RNA polymerase. Biochemistry. 31, 9636-9641 (1992).
  16. Keller, W., Bienroth, S., Lang, K. M., Christofori, G. Cleavage and polyadenylation factor CPF specifically interacts with the pre-mRNA 3′ processing signal AAUAAA. EMBO J. 10, 4241-4249 (1991).
  17. Takagaki, Y., Ryner, L. C., Manley, J. L. Four factors are required for 3′-end cleavage of pre-mRNAs. Genes Dev. 3, 1711-1724 (1989).
  18. Takagaki, Y., et al. A multisubunit factor, CstF, is required for polyadenylation of mammalian pre-mRNAs. Genes Dev. 4, 2112-2120 (1990).
  19. Ruegsegger, U., Blank, D., Keller, W. Human pre-mRNA cleavage factor Im is related to spliceosomal SR proteins and can be reconstituted in vitro from recombinant subunits. Mol Cell. 1, 243-253 (1998).
  20. Vries, H., et al. Human pre-mRNA cleavage factor II(m) contains homologs of yeast proteins and bridges two other cleavage factors. EMBO J. 19, 5895-5904 (2000).
  21. Gilmartin, G. M., Nevins, J. R. An ordered pathway of assembly of components required for polyadenylation site recognition and processing. Genes Dev. 3, 2180-2190 (1989).
  22. Shi, Y., et al. Molecular architecture of the human pre-mRNA 3′ processing complex. Mol Cell. 33, 365-376 (2009).
  23. Bentley, D. L. Rules of engagement: co-transcriptional recruitment of pre-mRNA processing factors. Curr Opin Cell Biol. 17, 251-256 (2005).
  24. Tian, B., Manley, J. L. Alternative cleavage and polyadenylation: the long and short of it. Trends Biochem Sci. 38, 312-320 (2013).
  25. Ryner, L. C., Manley, J. L. Requirements for accurate and efficient mRNA 3′ end cleavage and polyadenylation of a simian virus 40 early pre-RNA in vitro. Molecular and Cellular Biology. 7, 495-503 (1987).
  26. Hirose, Y., Manley, J. L. Creatine phosphate, not ATP, is required for 3′ end cleavage of mammalian pre-mRNA in vitro. J Biol Chem. 272, 29636-29642 (1997).
  27. Ryan, K., Khleborodova, A., Pan, J., Ryan, X. P. Small molecule activators of pre-mRNA 3′ cleavage. RNA. 15, 483-492 (2009).
check_url/51309?article_type=t

Play Video

Cite This Article
Jablonski, J., Clementz, M., Ryan, K., Valente, S. T. Analysis of RNA Processing Reactions Using Cell Free Systems: 3′ End Cleavage of Pre-mRNA Substrates in vitro. J. Vis. Exp. (87), e51309, doi:10.3791/51309 (2014).

View Video