Summary

脑电图沐节奏典型和非典型发展

Published: April 09, 2014
doi:

Summary

脑电图亩节奏评估为研究大脑活动的唯一方法,当与基于行为的检测相结合,可以是一个强大的工具,阐明社会认知方面,如模仿,在临床人群。

Abstract

脑电图(EEG)是评估和记录大脑活动的有效,高效,无创方法。鉴于良好的时间分辨率,脑电图可以用来检查与特定的行为,状态或外界刺激的神经反应。该实用程序的一个例子是镜像神经元系统(MNS)在人类通过脑电图亩节奏的检查评估。脑电图亩的节奏,从位于市中心的电极记录在8-12赫兹的频率范围内振动的活性,抑制当一个人执行时,或者干脆指出,目标导向行动。因此,已经提出,以反映MNS的活性。据推测,在镜像神经元系统(MNS)功能障碍中起着自闭症谱系障碍(ASD)的社会赤字贡献作用。该MNS然后可以通过使用脑电图亩节奏衰减为指标,对其活动进行无创检查在临床人群。所描述的普罗特OCOL提供了一个途径是观察社会的认知功能与典型的和非典型的发展,如房间隔缺损的个体理论上链接到MNS。

Introduction

脑电图(EEG)是评估和记录大脑活动的有效,高效,无创方法。作为神经元激发在大脑中,所产生的电压可以被放大,记录,并以图形方式表示。脑电图的时间分辨率允许在大脑的振荡模式,即使短暂的变化,以及大脑的响应特定刺激的分析的分析。

尽管是历史最悠久的大脑成像技术,其历史可以追溯到19 世纪后期,脑电图仍具有广泛的适用性。而功能性磁共振成像(fMRI)具有优良的空间分辨率,它具有相对较差的时间分辨率。这代表了功能磁共振成像评估的主要限制给出的令人难以置信的速度,发生在大脑的进程。脑电图有毫秒级评估电气大脑活动的能力,提供了潜在的Insight入脑的处理的各个阶段。

日新月异的技术也扩大了脑电图的适用性。在记录系统的密​​度的增加使得对源定位技术的发展,减轻对于空间分辨率的一些脑电图的局限性。另外,先进的系统已经减少了单个参与者建立时间显著,允许以前没有的人群,如婴幼儿及临床样品1-3,28-30的评估。

鉴于良好的时间分辨率,脑电图可以用来检查与特定的行为,状态或外界刺激的神经反应。该实用程序的一个例子是镜像神经元系统(MNS)在人体中的评估。镜像神经元最初在猴子身上发现使用单神经元记录4,证明一组神经元的反应既执行和观察电机动作。将电极在大脑中的这种直接记录方法,在人类中,只有在恶劣的临床病例中很少使用。脑电图已经提供了一种通过监测脑电图亩节奏评估MNS。在8-12赫兹范围该振荡模式已显示出减弱的EEG功率响应于执行和观察马达的动作,类似于在猴子5-7中观察到的激活模式。同样,通过经颅磁刺激( 额下回)刺激假定MNS脑区的脑电废除节奏万亩和8万亩脑电节律抑制与相关脑功能成像的科目9中公认的镜像神经元区域BOLD信号,提供额外的支持,这节奏索引,至少部分地,MNS活性。脑电图亩节奏评估允许的镜像神经元作为的无创性评估ivity在人。

脑电图为研究大脑活动的唯一方法,当与基于行为的检测相结合,它可以是一个强大的工具,阐明社会认知方面,如模仿,在临床人群。此外,脑电图与人群的认知或语言障碍使用的适用性允许洞察个人对他们来说,其他成像技术或行为范式可能不太成功运用的能力。所描述的协议提供了一个途径,研究社会认知功能理论上链接到镜像神经元系统中具有典型和非典型的发展,如自闭症的人。

Protocol

以下协议坚持华盛顿大学机构审查委员会的指导方针。 1,电生理评估会议的制备机房准备:地方manipulandum( 见图1),附带一个传感器,它发送一个带有时间戳标记采集软件,当它被抓住,在表中抓参与者接触木块。激活脑电信号采集软件,并开始“新的会话”( 图S1)。 扣除准备:蒸馏水(1升),氯化钾(1汤匙),和婴儿洗…

Representative Results

典型成人,儿童和婴幼儿的范式既执行和观察的行为在各种刺激和5,14-30期间一贯表现亩节奏。衰减在该频段频率一致本地化跨越中央电极( 图3),表明这不是减少它被记录在其他的头皮区域阿尔法权力。类似地,在观察运动的衰减在这个频率被限制到观察的基于生物学的运动和抑制的是不是简单地从运动引起穿过视场,如弹跳球( 图4)。亩抑制响应于一个事…

Discussion

成功收购,加工和分析相关的万亩节奏和应用临床人群电数据需要1个)的脑电图方法工具的应用,2)仔细神器检测和数据还原,3)准确识别亩节奏,和4)的临床群体以及确定适当的对照组的准确表征。

适当的脑电图方法需要正常运作和集成设备,适当帽的选择和布局,信号的精确放大和时序,明确,畅通,无失真的信号,适当参考的信号,适当分段(…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作是由西蒙斯基金会(SFARI#89638到RB)的资助。

Materials

Geodesic EEG System EGI N/A Any EEG system, not only EGI based systems, is applicable for the described study
MATLAB software MATLAB N/A Any mathematical, statistical software that can work with matrices is applicable
Netstation software EGI N/A Any EEG acquisition software is applicable for the described study
Manipulandum custom N/A Any object that is co-registered with data acquisition software to signal a successful grasp

References

  1. Kuhl, P. K., Coffey-Corina, S., Padden, D., Dawson, G. Links between social and linguistic processing of speech in preschool children with autism: behavioral and electrophysiological. 8, (2005).
  2. McPartland, J., Dawson, G., Webb, S. J., Panagiotides, H., Carver, L. J. Event-related brain potentials reveal anomalies in temporal processing of faces in autism spectrum disorder. J. Child Psychol. Psychiatry. 45, 1235-1245 (2004).
  3. Bernier, R., Dawson, G., Webb, S., Murias, M. EEG mu rhythm and imitation impairments in individuals with autism spectrum disorder. Brain Cogn. 64, 228-237 .
  4. Rizzolatti, G., Fadiga, L., Gallese, V., Fogassi, L. Premotor cortex and the recognition of motor actions. Brain Res. Cogn. Brain. 3, 131-141 (1996).
  5. Muthukumaraswamy, S. D., Johnson, B. W., McNair, N. A. Mu rhythm modulation during observation of an object-directed grasp. Brain Res. Cogn. Brain Res. 19, 195-201 .
  6. Pineda, J. A. The functional significance of mu rhythms: translating "seeing" and "hearing" into "doing&#34. Brain Res. Brain Res. Rev. 50, 57-68 (2005).
  7. Vanderwert, R. E., Fox, N. A., Ferrari, P. F. The mirror mechanism and mu rhythm in social development. Neurosci. Lett. 540, 15-20 (2013).
  8. Keuken, M. C., et al. The role of the left inferior frontal gyrus in social perception: an rTMS study. Brain Res. , 1383-13196 (2011).
  9. Braadbaart, L., Williams, J. H., Waiter, G. D. Do mirror neuron areas mediate mu rhythm suppression during imitation and action observation. Int. J. Psychophysiol. , 99-105 (2013).
  10. Rogers, S., Cook, I., Greiss-Hess, L. . Mature Imitation Task. Unpublished coding manual. , .
  11. Lord, C., Rutter, M., Le Couteur, A. Autism Diagnostic Interview-Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J. Autism Disord. 24, 659-685 (1994).
  12. Lord, C., et al. The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. J. Autism Dev. Disord. 30, 205-223 (2000).
  13. . American Psychiatric Association (APA). Diagnostic and statistical manual of mental. disorders, Edition. , .
  14. Gastaut, H. J., Bert, J. EEG changes during cinematographic presentation; moving picture activation. of the EEG. Electroencephalogr. Clin. Neurophysiol. 6, 433-444 (1954).
  15. Muthukumaraswamy, S. D., Johnson, B. W. Changes in rolandic mu rhythm during observation of a precision grip. Psychophysiology. 41, 152-156 (2004).
  16. Chatrian, G. E., Petersen, M. C., Lazarte, J. A. The blocking of the rolandic wicket rhythm and some central changes related to movement. Electroencephalogr. Clin. Neurophysiol. 11, 497-510 (1959).
  17. Pfurtscheller, G., Neuper, C., Andrew, C., Edlinger, G. Foot and hand area mu rhythms. Int. J. Psychophysiol. 26, 121-135 (1997).
  18. Arroyo, S., et al. Functional significance of the mu rhythm of human cortex: an electrophysiologic study with subdural electrodes. Electroencephalogr. Clin. Neurophysiol. 87, 76-87 (1993).
  19. Babiloni, C., et al. Human cortical electroencephalography (EEG) rhythms during the observation of simple aimless movements: a high-resolution EEG study. Neuroimage. 17, 559-572 (2002).
  20. Babiloni, C., et al. Human movement-related potentials vs desynchronization of EEG alpha rhythm: a high-resolution EEG study. Neuroimage. 10, 658-665 (1999).
  21. Babiloni, C., et al. Transient human cortical responses during the observation of simple finger movements: a high-resolution EEG study. Hum. Brain. 20, 148-157 (2003).
  22. Cochin, S., Barthelemy, C., Lejeune, B., Roux, S., Martineau, J. Perception of motion and qEEG activity in human adults. Electroencephalogr. Clin. Neurophysiol. 107, 287-295 (1998).
  23. Cochin, S., Barthelemy, C., Roux, S., Martineau, J. Observation and execution of movement: similarities demonstrated by quantified electroencephalography. Eur. J. Neurosci. 11, 1839-1842 (1999).
  24. Cochin, S., Barthelemy, C., Roux, S., Martineau, J. Electroencephalographic activity during perception of motion in childhood. Eur. J. Neurosci. 13, 1791-1796 (2001).
  25. Martineau, J., Cochin, S. Visual perception in children: human, animal and virtual movement activates different cortical areas. Int. J. Psychophysiol. 51, 37-44 (2003).
  26. Lepage, J. F., Theoret, H. EEG evidence for the presence of an action observation-execution matching system in children. Eur. J. Neurosci. 23, 2505-2510 (2006).
  27. Marshall, P. J., Bar-Haim, Y., Fox, N. A. Development of the EEG from 5 months to 4 years of age. Clin. Neurophysiol. 113, 1199-1208 (2002).
  28. Southgate, V., Johnson, M. H., El Karoui, I., Csibra, G. Motor system activation reveals infants’ on-line prediction of others’ goals. Psychol. Sci. 21, 355-359 (2010).
  29. Nystrom, P., Ljunghammar, T., Rosander, K., von Hofsten, C. Using mu rhythm desynchronization to measure mirror neuron activity in infants. Dev. Sci. 14, 327-335 (2011).
  30. Southgate, V., Johnson, M. H., Osborne, T., Csibra, G. Predictive motor activation during action observation in human infants. Biol. , 769-772 (2009).
  31. Oberman, L. M., et al. EEG evidence for mirror neuron dysfunction in autism spectrum disorders. Brain Res. Cogn. Brain Res. 24, 190-198 (2005).
  32. Martineau, J., Cochin, S., Magne, R., Barthelemy, C. Impaired cortical activation in autistic children: is the mirror neuron system involved. Int. J. Psychophysiol. 68, 35-40 (2008).
  33. Oberman, L. M., Ramachandran, V. S., Pineda, J. A. Modulation of mu suppression in children with autism spectrum disorders in response to familiar or unfamiliar stimuli: the mirror neuron hypothesis. Neuropsychologia. 46, 1558-1565 (2008).
  34. Raymaekers, R., Wiersema, J. R., Roeyers, H. . EEG Study of the Mirror Neuron System in Children with High Functioning Autism. Brain Res. , 113-121 (2009).
  35. Fan, Y. T., Decety, J., Yang, C. Y., Liu, J. L., Cheng, Y. Unbroken mirror neurons in autism spectrum disorders. J. Child Psychol. Psychiatry. 51, 981-988 (2010).
  36. Bernier, R., Aaronson, B., McPartland, J. The role of imitation in the observed heterogeneity in EEG mu rhythm in autism and typical development. Brain Cogn. 82, 69-75 (2013).
  37. Pfurtscheller, G., Lopesda Silva, ., H, F. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin. Neurophysiol. 110, 1842-1857 (1999).
  38. Marshall, P. J., Young, T., Meltzoff, A. N. Neural correlates of action observation and execution in 14‐month‐old infants: An event‐related EEG desynchronization study. Dev. Sci. , 474-480 (2011).
  39. Marshall, P. J., Meltzoff, A. N. Neural mirroring systems: Exploring the EEG mu rhythm in human infancy. Dev. Cogn. Neurosci. , 110-123 (2011).
  40. Oberman, L., McCleery, J., Hubbard, E., Bernier, R., Pineda, J. Developmental changes in mu suppression to observed actions in individuals with autism spectrum disorders. Soc. Cogn. Affective Neurosci. 8, 300-304 .

Play Video

Cite This Article
Bernier, R., Aaronson, B., Kresse, A. EEG Mu Rhythm in Typical and Atypical Development. J. Vis. Exp. (86), e51412, doi:10.3791/51412 (2014).

View Video