Summary

Juxtacellular Overvågning og lokalisering af Single neuroner inden subcorticale hjernestrukturer af indberetning, Head-behersket rotter

Published: April 27, 2015
doi:

Summary

This protocol describes the design and surgical implantation of a head-restraining mechanism to monitor neuronal activity in sub-cortical brain structures in alert rats. It delineates procedures to isolate single neurons in the juxtacellular configuration and to efficiently identify their anatomical locations.

Abstract

There are a variety of techniques to monitor extracellular activity of single neuronal units. However, monitoring this activity from deep brain structures in behaving animals remains a technical challenge, especially if the structures must be targeted stereotaxically. This protocol describes convenient surgical and electrophysiological techniques that maintain the animal’s head in the stereotaxic plane and unambiguously isolate the spiking activity of single neurons. The protocol combines head restraint of alert rodents, juxtacellular monitoring with micropipette electrodes, and iontophoretic dye injection to identify the neuron location in post-hoc histology. While each of these techniques is in itself well-established, the protocol focuses on the specifics of their combined use in a single experiment. These neurophysiological and neuroanatomical techniques are combined with behavioral monitoring. In the present example, the combined techniques are used to determine how self-generated vibrissa movements are encoded in the activity of neurons within the somatosensory thalamus. More generally, it is straightforward to adapt this protocol to monitor neuronal activity in conjunction with a variety of behavioral tasks in rats, mice, and other animals. Critically, the combination of these methods allows the experimenter to directly relate anatomically-identified neurophysiological signals to behavior.

Introduction

Overvågning neuronal aktivitet i en advarsel dyr aktivt engageret i en adfærdsmæssig opgave er afgørende for at forstå funktion og organisering af nervesystemet. Ekstracellulær registrering af den elektriske aktivitet fra enkelte neuronale enheder har længe været en hæfteklamme værktøj systemer neurovidenskab og er stadig i vid udstrækning anvendes på nuværende tidspunkt. En række af elektrode typer og konfigurationer, afhængigt af de videnskabelige og tekniske krav, som en bestemt eksperiment. Kronisk implanteret Microdrives eller elektrode arrays anvendes ofte i frit bevægelige dyr, herunder fugle, gnavere og ikke-menneskelige primater 1-4. Alternativt er akutte gennemføringer med metal eller glas mikroelektroder via en ekstern mikromanipulator ofte til at optage fra bedøvede eller head-behersket dyr. Glasmikropipette elektroder har den fordel, at de kan anvendes i juxtacellular eller "celle vedlagte" konfiguration utvetydigt isolereaktivitet af enkelte neuroner uden komplikationer af post-hoc spike sortering 5. Disse elektroder endvidere muliggøre optagelse fra anatomisk identificerede celler eller steder, da de kan anvendes til at injicere små aflejringer af farvestof eller neuroanatomiske sporstoffer, eller endda til at fylde den enkelte optaget celle. Denne konfiguration er blevet anvendt med succes i rotter, mus og fugle 6-10. Det for tiden beskrevne teknik fokuserer på juxtacellular overvågning og ekstracellulære farvestof indskud i alarm, head-behersket rotter. Bemærk, at i modsætning til enkelt celle juxtacellular fylder, disse farvestof indskud ikke give oplysninger om cellemorfologi eller axonale fremspring 11, men de gør det muligt nøjagtigt anatomisk lokalisering til ca. 50 um og kritisk, har en betydeligt højere udbytte i Alert dyr. Oplysninger om encellede juxtacellular fylder ikke desto mindre fastsat som en alternativ strategi for anatomiske mærkning.

Kort sagt, denprotokol består af tre hovedfaser. I den første fase, er rotten akklimatiseret til kroppen tilbageholdenhed i en klud sok (Figur 1) over en periode på 6 dage. I den anden fase, er en nakkestøtte apparat (figur 2) og optagelse kammer indopereret sådan, at rotten kan opretholdes i stereotaktisk fly under flere efterfølgende indspilningerne (Figur 3); denne procedure giver forsøgslederen at målrette bestemte subcorticale områder af hjernen for elektrofysiologiske undersøgelse baseret på standard henvisning koordinater 12. Den tredje fase indebærer at placere rotten i et passende jig for udførelse af adfærdsmæssige og elektrofysiologiske forsøg (figur 4), konstruere elektroden fra en kvarts kapillarrør (figur 5), hvilket gør juxtacellular neuronale optagelser, entydigt isolere enkelte enheder 6-9, og markerer anatomiske locatipå af optagelsen site med Chicago Sky blå farvestof (figur 6 og 7). Optagelserne udføres med samtidig adfærdsmæssige overvågning; dog vil de tekniske detaljer i den adfærd afhænge af de videnskabelige mål for hvert forsøg, og er således uden for rammerne af en enkelt protokol. Efter afslutning af den eksperimentelle procedure, der kan gentages på flere dage, dyret aflivet. Hjernen udvindes og forarbejdes i overensstemmelse med standard neuroanatomiske teknikker, der anvender enten lyse felt eller fluorescens mikroskopi.

Protocol

Forsøgsprotokoller blev udført på kvindelige Long Evans rotter (250-350 g) i overensstemmelse med føderalt foreskrevne dyr pleje og brug retningslinier og blev godkendt af Institutional Animal Care og brug Udvalg på University of California San Diego. 1. acclimating Rat til kroppen Restraint BEMÆRK: Placer rotte på en diæt. Feed rotter en gang om dagen umiddelbart efter hver daglige håndtering session at akklimatisere rotte til fastholdelsesanordningen (be…

Representative Results

Neurale enheder i ventrale posterior mediale (VPM) thalamus indkode fasen af vibrissa bevægelse under selv-genererede røre 15,16. Figur 7A viser stikprøve spiking aktivitet af en VPM thalamiske enhed som en rotte aktivt røre. Figur 7B viser et histogram af spike gange tilpasset til den øjeblikkelige fase af vibrissa bevægelse 17. Der er flere pigge under tilbagetrækning fase piskning. Efter optagelsen var placeringen af enheden mærket via iontoforese …

Discussion

Konstruktion af den eksperimentelle jig

Beskrivelsen af de mekaniske dele, der anvendes til at bygge den eksperimentelle jig (figur 4) er udeladt fra protokol, da det kan konstrueres i en række forskellige måder. I denne demonstration standard opto-mekaniske dele og support klemmer bruges til at montere nakkestøtten bar og kroppen tilbageholdenhed rør (se Materialer afsnit). Lignende opto-mekanisk dele kan bruges til at mon…

Disclosures

The authors have nothing to disclose.

Acknowledgements

We are grateful to the Canadian Institutes of Health Research (grant MT-5877), the National Institutes of Health (grants NS058668 and NS066664), and the US-Israeli Binational Foundation (grant 2003222) for funding these studies.

Materials

Name of the Reagent Company Catalogue Number Comments 
Ketaset (Ketamine HCl) Fort Dodge  N/A
Anased (Xylazine solution) Lloyd Laboratories N/A
Betadyne (Povidone-Iodine) CVS Pharmacy 269281
Loctite 495 Grainger Industrial Supply 4KL86 20-40 cp cyanoacrylate
Vetbond 3M 1469SB
Grip cement powder Dentsply Intl 675571 For the base of the recording chamber
Grip cement liquid Dentsply Intl 675572 For the base of the recording chamber
Silicone Gel Dow Corning Mar-80
Jet denture repair acrylic powder Lang Dental Manufacturing Co. N/A For securing the head restraint apparatus to the cranium
Ortho-Jet Fast curing orthodontic acrylic resin liquid Lang Dental Manufacturing Co. N/A For securing the head restraint apparatus to the cranium
Chicago sky blue Sigma C8679
Paraformaldehyde Sigma 158127 For perfusion and tissue fixation
Phosphate-buffered saline Sigma P3813 For perfusion and tissue fixation
Cytochrome C Sigma C2506 For cytochrome-oxidase staining (Figure 7)
Diaminobenzidine Sigma D5905 For cytochrome-oxidase staining (Figure 7)
Material Name Company Catalogue Number Comments 
Rat sock Sew Elegant (San Diego, CA) N/A Custom made, Figures 1, 4
PVC tube 2 ½” U.S. Plastic Co. 34108 Figure 4
Subminiature D pins & sockets TE Connectivity 205089-1 Figure 3
Stainless steel music wire 0.010” diameter Precision Brand Products, Inc. 21010 Figure 3
Stereotaxic holding frame Kopf Instruments Model 900 Figure 3
Stereotaxic ear bars Kopf Instruments Model 957 Figure 3
Stereotaxic manipulator Kopf Instruments Model 960 Figure 3
½ mm drill burr Henry Schein 100-3995
Quiet-Air dental drill  Midwest Dental 393-1600
Stainless steel 0-80 1/8” screw Fastener superstore 247438 Figure 3
0.2mL centrifuge tube Fisher Scientific 05-407-8A Figure 3
Custom head-holding bar UCSD SIO Machine Shop N/A Custom made, Figures 2, 3, 4
Custom head-holding plate UCSD SIO Machine Shop N/A Custom made, Figure 2, 3, 4
Right angle post-clamp Newport MCA-1 Figure 3,4; standard opto-mechanical parts for the experimental jig (Figure 4) are also from Newport Corp.
8-32 3/4” screw Fastener Superstore 240181 For head-restraint, Figure 3
4-40 ¼” screw Fastener Superstore 239958 For head restraint, Figures 3, 4
Quartz capillary tubing Sutter Instruments QF-100-60-10 Figure 5
Carbon dioxide laser puller Sutter instruments P-2000
Motorized micromanipulator Sutter Instruments MP-285
Microelectrode amplifier Molecular Devices Multiclamp 700B Alternate part: Molecular Devices Axoclamp 900A
Microelectrode amplifier head stage Molecular Devices CV-7B Alternate part: HS-9Ax10 with Molecular Devices Axoclamp 900A 
Isolated pulse stimulator A-M Systems Model 2100 Alternate part: HS-9Ax10 with Molecular Devices Axoclamp 900A
Audio monitor Radio Shack 32-2040
Pipette holder Warner Instruments #MEW-F10T Alternate parts: see Discussion
Figure 6A
Electrode lead wire Cooner wire NEF34-1646 (optional), Figure 6D
Relay for amplifier head-stage COTO Technology #2342-05-000 (optional) Used with a custom-made printed circuit board (UCSD Physics Electronics Shop), Figure 6A-C
Digital video camera Basler A602fm (optional) For behavioral monitoring, Figure 7

References

  1. Fee, M. S., Leonardo, A. Miniature motorized microdrive and commutator system for chronic neural recording in small animals. Journal of Neuroscience Methods. 112 (2), 83-94 (2001).
  2. Ventakachalam, S., Fee, M. S., Kleinfeld, D. Ultra-miniature headstage with 6-channel drive and vacuum-assisted micro-wire implantation for chronic recording from neocortex. Journal of Neuroscience Methods. 90 (1), 37-46 (1999).
  3. Szuts, T. A. A wireless multi-channel neural amplifier for freely moving animals. Nature Neuroscience. 14 (2), 263-269 (2011).
  4. Roy, S., Wang, X. Wireless multi-channel single unit recording in freely moving and vocalizing primates. Journal of neuroscience. 203 (1), 28-40 (2012).
  5. Hill, D. N., Mehta, S. B., Kleinfeld, D. Quality metrics to accompany spike sorting of extracellular signals. Journal of Neuroscience. 31 (24), 8699-8705 (2011).
  6. Pinault, D. A novel single-cell staining procedure performed in vivo under electrophysiological control: morpho-functional features of juxtacellularly labeled thalamic cells and other central neurons with biocytin or Neurobiotin. Journal of neuroscience. 65 (2), 113-136 (1996).
  7. Person, A. L., Perkel, D. J. Pallidal neuron activity increases during sensory relay through thalamus in a songbird circuit essential for learning. The Journal of neuroscience. 27 (32), 8687-8698 (2007).
  8. Kock, C. P., Sakmann, B. Spiking in primary somatosensory cortex during natural whisking in awake head-restrained rats is cell-type specific. Proceedings of the National Academy of Sciences USA. 106 (38), 16446-16450 (2009).
  9. Connor, D. H., Peron, S. P., Huber, D., Svoboda, K. Neural activity in barrel cortex underlying vibrissa-based object localization in mice. Neuron. 67 (6), 10481061 (2010).
  10. Hellon, R. The marking of electrode tip positions in nervous tissue. The Journal of physiology. 214, 12P (1971).
  11. Furuta, T., Deschênes, M., Kaneko, T. Anisotropic distribution of thalamocortical boutons in barrels. The Journal of Neuroscience. 31 (17), 6432-6439 (2011).
  12. Paxinos, G., Watson, C. . The Rat Brain in Stereotaxic Coordinates. , (1986).
  13. Kleinfeld, D., Delaney, K. R. Distributed representation of vibrissa movement in the upper layers of somatosensory cortex revealed with voltage sensitive dyes. Journal of Comparative Neurology. 375 (1), 89-108 (1996).
  14. Wong-Riley, M. Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry. Brain research. 171 (1), 11-28 (1979).
  15. Moore, J. D., Deschênes, M., Kleinfeld, D. Self-generated vibrissa motion and touch are differentially represented throughout ventral posterior medial thalamus in awake, head-fixed rats. Society for Neuroscience Annual Meeting. 41 496.08/TT424 Society for Neuroscience. 41, (2011).
  16. Khatri, V., Bermejo, R., Brumberg, J. C., Zeigler, H. P. Whisking in air: Encoding of kinematics by VPM neurons in awake rats. Somatosensory and Motor Research. 27 (2), 344-356 (2010).
  17. Hill, D. N., Curtis, J. C., Moore, J. D., Kleinfeld, D. Primary motor cortex reports efferent control of vibrissa position on multiple time scales. Neuron. 72 (2), 344-356 (2011).
  18. Moore, J. D. Hierarchy of orofacial rhythms revealed through whisking and breathing. Nature. 497, 205-210 (2013).
  19. Duque, A., Zaborszky, L. . Neuroanatomical Tract-Tracing 3. , 197-236 (2006).
  20. . . Neuroactive substances: Neuropharmacology by microiontophoresis. , .
  21. . . Dyes and Tracers: Sitemarking and tracktracing by microiontophoresis. , .
  22. Urbain, N., Deschênes, M. Neuroactive substances: Neuropharmacology by microiontophoresis. (Kation Scientific), Dyes and Tracers: Sitemarking and tracktracing by microiontophoresis. (Kation). Journal of Neuroscience. 27 (45), 12407-12412 (2007).
check_url/51453?article_type=t

Play Video

Cite This Article
Moore, J. D., Deschênes, M., Kleinfeld, D. Juxtacellular Monitoring and Localization of Single Neurons within Sub-cortical Brain Structures of Alert, Head-restrained Rats. J. Vis. Exp. (98), e51453, doi:10.3791/51453 (2015).

View Video