Summary

In Vitro Pancreas Organogenesis fra spredte Mouse Embryonale Progenitorer

Published: July 19, 2014
doi:

Summary

Den tredimensionale kultur beskrevet i denne protokol metode sammenfatter bugspytkirtlen udvikling fra spredte embryonale mus bugspytkirtel stamfædre, herunder deres betydelige ekspansion, differentiering og morfogenese i en forgrenet orgel. Denne metode er modtagelig for billedbehandling, funktionelle indblanding og manipulation af den niche.

Abstract

The pancreas is an essential organ that regulates glucose homeostasis and secretes digestive enzymes. Research on pancreas embryogenesis has led to the development of protocols to produce pancreatic cells from stem cells 1. The whole embryonic organ can be cultured at multiple stages of development 2-4. These culture methods have been useful to test drugs and to image developmental processes. However the expansion of the organ is very limited and morphogenesis is not faithfully recapitulated since the organ flattens.

We propose three-dimensional (3D) culture conditions that enable the efficient expansion of dissociated mouse embryonic pancreatic progenitors. By manipulating the composition of the culture medium it is possible to generate either hollow spheres, mainly composed of pancreatic progenitors expanding in their initial state, or, complex organoids which progress to more mature expanding progenitors and differentiate into endocrine, acinar and ductal cells and which spontaneously self-organize to resemble the embryonic pancreas.

We show here that the in vitro process recapitulates many aspects of natural pancreas development. This culture system is suitable to investigate how cells cooperate to form an organ by reducing its initial complexity to few progenitors. It is a model that reproduces the 3D architecture of the pancreas and that is therefore useful to study morphogenesis, including polarization of epithelial structures and branching. It is also appropriate to assess the response to mechanical cues of the niche such as stiffness and the effects on cell´s tensegrity.

Introduction

Organ kultur giver en nyttig model, der bygger bro mellem det komplekse, men yderst relevante in vivo undersøgelser og bekvem men omtrentlige simulering af cellelinje modeller. I tilfælde af bugspytkirtlen, der er helt svarer til bugspytkirtel progenitorer selvom der transformeres cellelinjer simulerer endokrine og eksokrine celler ikke cellelinie. Den voksne hele bugspytkirtlen kan ikke dyrkes; isolerede endokrine øer kan opretholdes for få uger uden celleproliferation og vævssnit kan opbevares in vitro i få timer 5. Embryonale bugspytkirtel kultur har været meget anvendt til ikke blot at studere dens udvikling, men også at undersøge epitel-mesenkymale interaktioner 4,6,7, til billede processer 8 eller kemisk forstyrre dem 9.. To orgel dyrkningsmetoder anvendes hovedsageligt: ​​Den første består i dyrkning af pancreas knopper på fibronectincoatede coatede plader 2, som er bekvemfår du let til billeddiagnostiske formål; den anden mulighed er at dyrke organer på filtre på luft-væske grænsefladen 3,4, som bedst bevarer morfogenese. Selvom meget nyttigt, disse metoder fører til en vis grad af udfladning; udvidelse af progenitorer er meget begrænset i forhold til den normale udvikling og starte befolkning er kompleks, der omfatter alle typer af pancreasceller og mesenchymale celler.

Evnen til kultur og udvide spredte primære celler er værdifuldt at studere afstamning relationer og afdække de iboende egenskaber af isolerede celletyper 10. Sugiyama m.fl. 11. Kunne opretholde bugspytkirtel stamfædre og hormonforstyrrende forfædre at tilbageholdte nogle funktionelle tegn i 3-5 dage i kultur på feeder lag. Pancreatospheres, beslægtet med neurosfærer 12 og mammospheres 13 er blevet udvidet fra voksne øer og duktale celler, selv om arten af de stamceller / stamcellerat generere disse kugler er ikke klart. Desuden, i modsætning til fysiologisk udvikling, pancreatospheres indeholdt nogle neuroner 14,15. Sfærer blev også for nylig produceret fra embryonale bugspytkirtel stamfædre 16,17 og regenererende pancreata 18 med god stamfader ekspansion og efterfølgende differentiering, men undlod at rekapitulere morfogenese.

3D-modeller fra spredte og ofte definerede celler, der selv-organisere i miniaturiserede organer har for nylig blomstrede og simulere udviklingen eller voksen omsætning af flere organer, såsom tarmen 19,20, maven 21, lever 22, prostata 23 og luftrøret 24.. I nogle tilfælde har udviklingsmæssige morfogenese og differentiering er sammenfattet i 3D fra ES-celler, som det er tilfældet af optiske kopper 25, tarme 26 eller hjerne 27.

Her har vi desCribe en metode til at udvide dissocierede multipotente bugspytkirtlen forfædre i en 3D Matrigel stillads, hvor de kan differentiere og selv-organisere.

Protocol

Denne protokol har til formål at dyrke pancreas organoids stammer fra murine E10.5 dissocierede epiteliale bugspytkirtlen celler. Protokollen kræver etisk godkendelse til dyreforsøg. 1. Dissektion af Dorsal Pancreas Bud fra E10.5 musefostre Sacrifice tidsbestemt drægtige mus ved embryonal dag (E) 10,5 åbne maven med en saks, fjerne de to Uterushornene og placere dem i en 10 cm petriskål fyldt med kold fosfatbuffer saltvand (PBS) eller Dulbeccos m…

Representative Results

E10.5 dorsale bugspytkirtlen progenitorer dissocieret og programlister i 3D Matrigel rekapitulere bugspytkirtlen udvikling. Stamfædre kan lettest følges med fluorescerende journalister. I vores tilfælde har vi brugt en transgen mus, der udtrykker en nuklear GFP protein styres af Pdx1 promotor (Pdx1-Ngn3-ER TM-nGFP) (Movie 1) i fravær af tamoxifen, og dermed uden at aktivere Neurog3 4 (figur 2). Med organoide medium, en første komp…

Discussion

Storstilet produktion af funktionelle betaceller in vitro er stadig ineffektiv 1. I denne udfordrende sammenhæng kan Developmental Biology undersøgelser hjælpe decifrere de nøjagtige signaler, der kræves for differentieringen af ​​funktionelle betaceller. Denne protokol giver mulighed for vedligeholdelse, udbygning og differentiering af embryonale pancreas stamfædre in vitro. Dette omfatter dannelsen af insulin-producerende beta-celler, der ikke co-udtrykke andre endokrine hormoner…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Dette arbejde blev finansieret sekventielt af en NCCR Frontiers in Genetics pilot award, Juvenile Diabetes Research Foundation Grant 41-2009-775 og Grant 12-126875 fra There Frie Forskningsråd / health and Sygdom. Forfatterne takker Spagnoli laboratorium for hosting video optagelse.

Materials

Penicillin-Streptomycin Gibco 15070-063 Stock keept at -20°C
KnockOut Serum replacement (supplement) Gibco 10828-028 Stock keept at -20°C
2-mercaptoethanol Sigma Aldrich 3148-25ML Stock keept at 4°C
Phorbol Myristate Acetate (PMA) Calbiotech 524400-1MG Stock keept at -20°C
Y-27632 (ROCK inhibitor) Sigma Aldrich ab120129 Stock keept at -20°C- Attention! Stability/source is a frequent source of problems
EGF Sigma Aldrich E9644-2MG Stock keept at -80°C
Recombinant Human R-spondin 1 R&D 4645-RS-025/CF Stock keept at -80°C
 - or - 
Recombinant Mouse R-spondin 1 R&D 3474-RS-050 Stock keept at -80°C
Recombinant Human FGF1 (aFGF) R&D 232-FA-025 Stock keept at -80°C- do not include to increase beta cell production
Heparin (Liquemin) Drossapharm Stock keept at 4°C
Recombinant Human FGF10 R&D 345-FG-025 Stock keept at -80°C
DMEM/F-12 Gibco 21331-020
Penicillin-Streptomycin Gibco 15070-063 Stock keept at -20°C
B27 x50 (supplement) Gibco 17504-044 Stock keept at -20°C
Recombinant Human FGF2 (bFGF) R&D 233-FB-025 Stock keept at -80°C
Y-27632 (ROCK inhibitor) Sigma Aldrich ab120129 Stock keept at -20°C- Attention! Stability/source is a frequent source of problems
DMEM/F-12 Gibco 21331-020
Matrigel Corning 356231 Stock keept at -20°C
Trypsin 0.05% Gibco 25300-054 Stock keept at 4°C
RNAlater – RNA stabilizing reagent Qiagen 76104 Store at room temperature
Dispase  Sigma Aldrich D4818-2MG Stock keept at -20°C
BSA for reconstitution Milipore 81-068 For reconstituition of cytokines  – Stock keept at -20°C
Fetal calf serum (FCS) Gibco 16141079 Stock keept at -20°C
60 well MicroWell trays Sigma Aldrich M0815-100EA
4-well plates Thermo Scientific 176740
95-well plates F bottom Greiner Bio 6555180
Glas bottom plates Ibidi 81158
Disposal micropittes Blaubrand 708745

References

  1. Pagliuca, F. W., Melton, D. A. How to make a functional beta-cell. Development. 140, 2472-2483 (2013).
  2. Percival, A. C., Slack, J. M. Analysis of pancreatic development using a cell lineage label. Exp Cell Res. 247, 123-132 (1999).
  3. Attali, M., et al. Control of beta-cell differentiation by the pancreatic mesenchyme. Diabetes. 56, 1248-1258 (2007).
  4. Johansson, K. A., et al. Temporal control of neurogenin3 activity in pancreas progenitors reveals competence windows for the generation of different endocrine cell types. Dev Cell. 12, 457-465 (2007).
  5. Speier, S., Rupnik, M. A novel approach to in situ characterization of pancreatic beta-cells. Pflugers Arch. 446, 553-558 (2003).
  6. Golosow, N., Grobstein, C. Epitheliomesenchymal interaction in pancreatic morphogenesis. Dev Biol. 4, 242-255 (1962).
  7. Miralles, F., Czernichow, P., Scharfmann, R. Follistatin regulates the relative proportions of endocrine versus exocrine tissue during pancreatic development. Development. 125, 1017-1024 (1998).
  8. Petzold, K. M., Spagnoli, F. M. A system for ex vivo culturing of embryonic pancreas. J. Vis. Exp. , 3979 (2012).
  9. Miralles, F., Battelino, T., Czernichow, P., Scharfmann, R. TGF-beta plays a key role in morphogenesis of the pancreatic islets of Langerhans by controlling the activity of the matrix metalloproteinase MMP-2. J Cell Biol. 143, 827-836 (1998).
  10. Hope, K., Bhatia, M. Clonal interrogation of stem cells. Nat Methods. 8, 36-40 (2011).
  11. Sugiyama, T., Rodriguez, R. T., McLean, G. W., Kim, S. K. Conserved markers of fetal pancreatic epithelium permit prospective isolation of islet progenitor cells by FACS. Proc Natl Acad Sci U S A. 104, 175-180 (2007).
  12. Reynolds, B. A., Weiss, S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science. 255, 1707-1710 (1992).
  13. Dontu, G., et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev. 17, 1253-1270 (2003).
  14. Smukler, S. R., et al. The adult mouse and human pancreas contain rare multipotent stem cells that express insulin. Cell Stem Cell. 8, 281-293 (2011).
  15. Seaberg, R. M., et al. Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages. Nat Biotechnol. 22, 1115-1124 (2004).
  16. Jin, L., et al. Colony-forming cells in the adult mouse pancreas are expandable in Matrigel and form endocrine/acinar colonies in laminin hydrogel. Proc Natl Acad Sci U S A. 110, 3907-3912 (2013).
  17. Sugiyama, T., et al. Reconstituting pancreas development from purified progenitor cells reveals genes essential for islet differentiation. Proc Natl Acad Sci U S A. 110, 12691-12696 (2013).
  18. Huch, M., et al. Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. Embo J. , (2013).
  19. Sato, T., et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. , (2009).
  20. Ootani, A., et al. Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche. Nat Med. 15, 701-706 (2009).
  21. Barker, N., et al. Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell. 6, 25-36 (2010).
  22. Huch, M., et al. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature. 494, 247-250 (2013).
  23. Lukacs, R. U., Goldstein, A. S., Lawson, D. A., Cheng, D., Witte, O. N. Isolation, cultivation and characterization of adult murine prostate stem cells. Nat Protoc. 5, 702-713 (2010).
  24. Rock, J. R., et al. Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc Natl Acad Sci U S A. 106, 12771-12775 (2009).
  25. Eiraku, M., et al. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature. 472, 51-56 (2011).
  26. Spence, J. R., et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature. 470, 105-109 (2011).
  27. Lancaster, M. A., et al. Cerebral organoids model human brain development and microcephaly. Nature. 10, (2013).
  28. Greggio, C., et al. Artificial three-dimensional niches deconstruct pancreas development in vitro. Development. 140, 4452-4462 (2013).
  29. Muzumdar, M. D., Tasic, B., Miyamichi, K., Li, L., Luo, L. A global double-fluorescent Cre reporter mouse. Genesis. 45, 593-605 (2007).
check_url/51725?article_type=t

Play Video

Cite This Article
Greggio, C., De Franceschi, F., Figueiredo-Larsen, M., Grapin-Botton, A. In Vitro Pancreas Organogenesis from Dispersed Mouse Embryonic Progenitors. J. Vis. Exp. (89), e51725, doi:10.3791/51725 (2014).

View Video