Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove

Medicine

Fundus Photography as a Convenient Tool to Study Microvascular Responses to Cardiovascular Disease Risk Factors in Epidemiological Studies

Published: October 22, 2014 doi: 10.3791/51904

Summary

Retinal image analysis is an unobtrusive procedure for visualizing the microcirculation. The impact of cardiovascular disease risk factors can result in changes of retinal vessel calibers. The procedures to acquire fundus images and the steps for calculating the vessel calibers are described.

Abstract

The microcirculation consists of blood vessels with diameters less than 150 µm. It makes up a large part of the circulatory system and plays an important role in maintaining cardiovascular health. The retina is a tissue that lines the interior of the eye and it is the only tissue that allows for a non-invasive analysis of the microvasculature. Nowadays, high-quality fundus images can be acquired using digital cameras. Retinal images can be collected in 5 min or less, even without dilatation of the pupils. This unobtrusive and fast procedure for visualizing the microcirculation is attractive to apply in epidemiological studies and to monitor cardiovascular health from early age up to old age.

Systemic diseases that affect the circulation can result in progressive morphological changes in the retinal vasculature. For example, changes in the vessel calibers of retinal arteries and veins have been associated with hypertension, atherosclerosis, and increased risk of stroke and myocardial infarction. The vessel widths are derived using image analysis software and the width of the six largest arteries and veins are summarized in the Central Retinal Arteriolar Equivalent (CRAE) and the Central Retinal Venular Equivalent (CRVE). The latter features have been shown useful to study the impact of modifiable lifestyle and environmental cardiovascular disease risk factors.

The procedures to acquire fundus images and the analysis steps to obtain CRAE and CRVE are described. Coefficients of variation of repeated measures of CRAE and CRVE are less than 2% and within-rater reliability is very high. Using a panel study, the rapid response of the retinal vessel calibers to short-term changes in particulate air pollution, a known risk factor for cardiovascular mortality and morbidity, is reported. In conclusion, retinal imaging is proposed as a convenient and instrumental tool for epidemiological studies to study microvascular responses to cardiovascular disease risk factors.

Introduction

The microcirculation consists of blood vessels with diameters less than 150 µm and includes smallest resistance arteries, arterioles, capillaries, and venules. These vessels make up a large part of the circulatory system and play an important role in maintaining cardiovascular health. The vessel diameter of 150 µm is a physiological and a physical limit. The rheological properties of vessels with a diameter less than 150 µm differ from large arteries. Furthermore, most of the autoregulatory resistance changes occur downstream from 150 µm in vascular beds exhibiting blood flow autoregulation1. The microcirculation has two important functions. The primary function is to provide cells with oxygen and metabolic substrates in order to match tissue demand and to drain waste products and carbon dioxide. Alterations in the number of exchange vessels and the microvascular flow patterns reduces the effective exchange surface area and may lead to suboptimal tissue perfusion and a failure to meet metabolic demand2. Further, the hydrostatic pressure drops within the vascular bed and the microcirculation plays a role in regulating the overall peripheral resistance3.

The retina is a layered tissue lining the interior of the eye. Its main function is to convert the incoming light into a neural signal that is further propagated to the visual cortex for processing visual information. The function of the retina is to see the outside world and all the ocular structures involved in this process are optically transparent. This makes the retinal tissue accessible for non-invasive imaging of the microvasculature4. Retinal imaging is being used to identify diseases of the eye. For example, an advanced form of macular degeneration can lead to vision loss because of abnormal blood vessel growth into the macula. These blood vessels tend to be more permeable and subject to bleeding and leaking of blood and proteins within or below the retina. The latter events are responsible for the irreversible damage to the photoreceptors. Development of glaucoma correlates with a damaging of ganglion cells and their axons. The effect of this process leads to cupping of the optic disc, which can be observed in retinal images5. Diabetic retinopathy is caused by hyperglycemia that leads to damage in the retinal vessel walls. This can result in ischemia, the growth of new blood vessels and a change in the vascular geometric network. Furthermore, the blood-retinal barrier may be subject to breakdown, causing leakage of dilated hyperpermeable capillaries and aneurysms6.

Retinal microvasculature shows homology with the microvascular beds found in the heart, lungs, and brain7. It is established that systemic diseases that affect the microcirculation of the brain can cause parallel changes in the retina. Arteriolar narrowing and enhanced arteriolar light reflex of the retina is associated with vessel abnormalities, white matter lesions and lacunes that are caused by cerebral small vessel disease8. A significant relationship was discovered between narrower retinal venules, an altered retinal microvascular network and the occurrence of Alzheimer disease. It is suggested that brains of patients have an altered cerebral microvasculature that is also observable in the retina9.

Evidence is also increasing about the correlation between retinal vascular changes and coronary heart disease10,11. The ratio between the diameter of retinal arteries and retinal veins (A/V) has been shown to be a sensitive proxy to reflect hypertension and atherosclerosis12. A narrowing of the arteries and widening of the veins, leading to a decreased A/V ratio, corroborates risk of stroke and myocardial infarction13. Hypertension can cause direct retinal ischemia and retinal infarcts that become visible as cotton wool spots and deep retinal white spots14. Serre and Sasongko recently summarized the literature and they concluded that exposure to lifestyle and environmental risk factors (e.g., diet, physical activity, smoking, and air pollution) can induce morphological changes in the retinal microvascular bed15. Importantly, such retinal changes have been associated with cardiovascular risk factors, even before clinical manifestations of diseases16.

Significant increases in the incidence of cardiovascular morbidity and mortality have been attributed to long- and short-term exposures to particulate matter air pollution17,18. Research indicates that particulate matter (PM), an important fraction of air pollution, contributes to the development of cardiovascular disease and induces cardiovascular events19,20. An impairment of the function of the microvascular bed is thought to play a role in the observed associations. In this respect, an association between exposure to air pollution and arteriolar narrowing in the retina has been reported by Adar and colleagues21. The retinal arteriolar caliber was narrower and venular caliber was wider among the 4607 participants of the Multi-Ethnic Study of Atherosclerosis (MESA) that were living in areas with increased long- and short-term exposure to PM2.5 (particulate matter ≤ 2.5 μm in diameter)21. Systemic inflammation caused by chronic air pollution exposure may result in wider venular diameters22. This corroborates the studies that report the impact of smoking on the retinal microvascular bed23. A recent publication reports on the association between short-term air pollution exposure and microvascular changes in healthy adults (22-63 years of age) measured with retinal fundus photography24. An increase in PM10 (particulate matter ≤ 10 μm in diameter) and BC (black carbon, a combustion by-product that can be used as a proxy for traffic-related diesel exhaust) was associated with a decrease in arteriolar caliber24,25.

In this scientific video protocol, the procedures are described to collect fundus pictures of the eye, to perform image analysis to obtain arteriolar and venular vessel calibers, and to calculate Central Retinal Arteriolar Equivalent (CRAE) and Central Retinal Venular Equivalent (CRVE). Retinal imaging is gaining increased attention because the retina is the only tissue that allows an unobtrusive analysis of the microvasculature and images can be collected from early age up to old age26,27. CRAE and CRVE appear to be sensitive parameters that reflect the impact of modifiable lifestyle and environmental cardiovascular disease risk factors on the microvasculature. In the manuscript, the repeatability of the vessel analysis is demonstrated. Furthermore, the applicability of retinal microvasculature analysis in epidemiological studies is shown by summarizing our findings obtained in a repeated-measures design with a focus on the impact of particulate air pollution exposure24.

Subscription Required. Please recommend JoVE to your librarian.

Protocol

The Ethics Board of Hasselt University and University Hospital Antwerp approved the studies. Participants gave their written informed consent to participate.

1. Instrument Setup

  1. Remove the black protection shells from the digital retinal camera and the main block of the unit.
  2. Open the battery compartment and place the battery in the camera. Do not disconnect the wire connecting the battery and the main unit.
  3. Screw the camera onto the main unit and connect the two wires. Connect the main unit to the power grid and to the computer with the supplied USB cables.
  4. Start the main unit by switching the on/off button to “on”. Start the camera by switching the on/off button to “on”.
  5. Start the computer. This will prevent connection errors between the main unit and the computer.

2. Capturing Photograph

  1. Start the Retinal Imaging Control Software (and fill in the required password). The software is a part of the digital retinal camera (see materials table for link).
  2. Start the study by clicking the “Study” icon in the upper left part of the screen. For a new patient, fill in all the details such as patient ID, patient name, date of birth, etc. If the patient is already in the system, fill in the “patient ID” and use the “Search history list”. Double-click on the name of the patient to start the study.
  3. Ask the patient to take a seat before the camera, place his/her chin on the chin rest and the forehead against the forehead rest and “lock” the head to take a photograph.
  4. Ask the patient to look straight into the lens of the camera. Move the camera in the horizontal (X-Y) plane to the right or left eye.
  5. Use the chin rest to position the cornea of the patient inside the two circles that appear on the camera display. Fine-tune by using the wheel on the joystick.
  6. Move the camera forward, backward, and sideways in the X-Y plane in order to position the pupil of the patient within the circles. Make sure the pupil forms a continuous circle. By doing so, the iris of the patient will be split up in two pieces.
  7. Use the “back trigger” on the joystick to switch from the cornea to the retina. At this stage, the patient should observe a green light. Ask the patient to look at the green light.
  8. Focus the camera by aligning the two lines that pop up when the wheel at the base of the joystick is turned. Turn the wheel until the two lines form a continuous line.
  9. Use the green light to place the eye in the optimal position for a photograph. If required, move the light using the arrow buttons at the right side of the camera. Position the green light in a way that the optic disc is centered on the camera display.
  10. Search for 2 white spots which appeared after switching to the retina (in step 2.7). To find the spots, move the unit in the X-Y plane. The spots are visible as a blurry stain. Move the unit forward or backwards until blurry stains turn into bright, white spots. The brighter and rounder the spots, the better the quality of the picture is. Position the spots until both are visible. Use the little wheel on the joystick to bring the spots to the middle of the camera display.
  11. Confirm that the two lines (from step 2.8) form a continuous line. The optic disc is centered on the camera display and is flanked by two bright, white spots. Take the retinal photograph by firing the button on top of the joystick.
  12. Save the photograph by pressing the “Study Complete” button on the lower right corner of the computer screen. Completing the study will automatically save the pictures in a map and close the study.

3. Analysis of Retinal Photograph

  1. Determine the scale ratio by measuring the distance between the center of macula (fovea) and the center of the optic disc (blind spot). Anatomically this distance is determined to be 4,500 µm or 2.5x the diameter of the optic disc, with the latter being approximately 1,800 µm. Ensure the distance is measured in pixels. Calculate the scale ratio by dividing 4,500 by the distance (in pixels) between the macula and blind spot.
  2. Open the retinal vessel analysis software “IVAN”.
    NOTE: The software is created at the University of Wisconsin at Madison. Detailed information on the usage of IVAN is taken from the manual.
  3. Fill in the scale ratio and proceed through the configuration.
  4. Verify that three yellow rings appear on the retinal photograph. The scale ratio determines the radius of the inner circle and encloses the optic disc. Verify that the middle point of the inner ring is on the middle point of the optic disc. If this is not the case, adjust the location of the circle by using the cursor keys. The radii of the middle and outer circles are 2x and 3x larger than the radius of the inner circle, respectively. In this way, zones A and B are created at a fixed distance from the optic disc.
  5. Check that the retinal image has the optic disc in the center of the photograph. This ensures a sharp focus of the image in zone B and this will facilitate the grading process (Figure 4A).
  6. Observe that the software automatically detects the blood vessels and assigns these vessels as venules (Figure 4B).
  7. Distinguish the vessels between arterioles and venules based on physiological differences. Arterioles will be indicated in red and venules in blue (Figure 4C). Use the following guidelines to identify each vessel:
    1. Determine the vessel color. Arterioles have a lighter orange-red color with a strong central light reflection. Veins have darker purple-red color with little or no central light reflex.
    2. Determine the course of the vessel. Arterioles tend to be straighter and smoother in outline; they are more regular in both path and outline. Venules are generally more tortuous, and more irregular in outline and diameter. Venules are broader in diameter at the disc margin than the corresponding arterioles.
    3. Identify the vessel by looking at the annotation of the preceding vessel. In principle, arterioles alternate with venules. Therefore, if a distinct venule is measured, the next vessel is more likely to be an arteriole.
    4. Define the crossing pattern. As a general rule, arterioles do not cross arterioles and venules do not cross venules. If a vessel of unknown identity crosses a venous branch within or distal to Zone B, then the unknown vessel is an arteriole. If it crosses an arteriolar branch within or distal to Zone B, then it is a venule.
    5. Identify smaller branches by tracing them proximally to their branching from a parent vessel, the identity of which may be evident from the first two guidelines. Use angles between vessels to differentiate crossings and branchings.
      NOTE: Crossings are frequently almost perpendicular (90°) or, if the two vessels are coursing in parallel, the angle of the crossing may be very shallow (less than 30°). Branchings are usually somewhat less than perpendicular (with the angle between the two branches from 30° to 45°).
    6. Select the full length of the vessel in the grading zone. Make sure that the standard deviation of the selected vessel does not exceed the value of 10. Smaller standard deviations indicate a good measurement.
  8. Use the software tools to select vessels that were not selected by the software itself. The same rules apply for these vessels as for the vessels automatically selected by the software.
  9. Determine Central Retinal Arteriolar and Venular Equivalent (CRAE and CRVE) automatically in IVAN.
  10. Calculate the CRAE and CRVE from their respective branching daughter vessels using revised formulas of Parr and Hubbard28.
    NOTE: The relationship between trunks and branches, with empirically derived branching coefficients, is given in following two formulas to approximate vessel equivalents. IVAN uses the six largest arterioles and venules for calculating CRAE and CRVE. The formulas are applied in an iterative procedure to pair up the six largest arterioles (or venules) until the central arteriolar (or venular) vessel equivalent is obtained.
    Arterioles: Equation 1 (1)
    Venules: Equation 2 (2)
    where w1, w2, and W are the widths of the narrower branch, the wider branch, and the parent trunk, respectively.
    NOTE: Assume that in a retinal photograph the six largest arterioles are 120, 110, 100, 90, 80, and 70 µm wide. Put 120 and 70 into equation (1), as well as 110 and 80, and 100 and 90. After the first iteration there are three values: 122.2, 120.0, and 118.4. Perform the next iteration by pairing 122.2 and 118.4, yielding 149.8. Carry over the middle number (120.0) to the final iteration. Pair 149.8 and 120.0 to yield 168.7 for CRAE.

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

Repeatability of CRAE and CRVE Determination

A panel of 61 individuals between 22 to 56 years old and free of clinically diagnosed cardiovascular diseases was recruited for studying technical repeatability and within-rater variability of Central Retinal Arteriolar Equivalent (CRAE) and Central Retinal Venular Equivalent (CRVE) determinations. The fundus of the right eye of each individual was photographed twice within a time period of 5 min using a retinal camera (Figures 1 and 2). This procedure was done on 4 consecutive days, approximately at the same time of the day. The average coefficients of variation ± standard deviation of the CRAE and CRVE of pictures taken within the 5-min period were 1.76 ± 1.71 and 1.78 ± 1.51, respectively. Average ± standard deviation of CRAE and CRVE values were 151.31 ± 13.53 and 213.20 ± 18.44, respectively. No significant differences were observed for CRAE and CRVE values obtained on 4 consecutive days.

CRAE and CRVE values of the right eye were averaged to one CRAE and CRVE value per day. Subsequently, repeatability of the measurements was evaluated by means of the Intraclass Correlation Coefficient (ICC), a dimensionless statistic bounded by 0 and 1 that describes the reproducibility of repeated measures in a population. The measurements were done by a single rater. Hence, a one-way random effects model allowed to estimate the within-rater variability29. The ICC was 0.919 (95% CI: 0.883, 0.946) and 0.898 (95% CI: 0.854, 0.932) for CRAE and CRVE, respectively. These ICC values are well above the threshold of 0.6, which is considered to be clinically significant and the estimates both fall within the broad category as being “almost perfect” in reliability30.

Panel Study to Investigate the Effect of Particulate Air Pollution

The study was conducted between January 2012 and May 2012 and included 84 individuals. Participants were 22 to 63 years old and free of clinically diagnosed cardiovascular diseases before and during the study period. One photograph of the fundus of the right eye was taken using a retinal camera on each of three separate examination days. The reader is referred to the paper of Louwies and collaborators for detailed information on how air pollution data was collected24. During the course of the study period, the ambient PM10 and BC levels were high in Belgium due to westbound atmospheric transport of polluted air from Eastern Europe. This is visualized in a time lapse video (Supplementary information). Air pollution concentrations were assigned to each participant for 2, 4, and 6 hr preceding the retinal exam. Air pollution levels were calculated on the day of the clinical visit from midnight until the time of the retinal exam. Air pollution levels were also assigned for the previous day and two days before the retinal exam. These concentrations are summarized as: lag2h, lag4h, lag6h, lag 24h, and lag 2d. Pollutant-specific, exposure-response analysis using mixed models was performed. Details of these analyses can be found in the original publication24. There was an inverse association between CRAE and air pollution concentrations (measured as PM10 and BC concentrations) in the hourly and daily exposure windows before the clinical examination. A decrease in CRAE of 0.93 μm (95% CI: –1.42, –0.45; p = 0.0003) was observed for each 10-μg/m³ increase in average PM10 during 24 hr preceding the examination (Figure 3). Shorter hourly PM10 exposure windows and PM10 concentrations averaged over the previous 2 days also revealed a significant decrease of the CRAE values. A decrease in CRAE of 1.84 µm (95% CI: –3.18, –0.51; p = 0.008) was also found for each 1-μg/m³ increase in BC 24 hr before the examination. No additional significant associations were observed between CRAE and the other calculated BC exposure windows. A decrease in CRVE of 0.86 µm (95% CI: –1.42, –0.30; p = 0.004) was observed for every 10-μg/m³ increase in PM10 in the 24 hr exposure window before the retinal picture was taken. Shorter exposure windows revealed additional significant effects (Figure 3). A negative association between CRVE and BC exposure during the 24 hr before the examination was observed. However, the effect did not reach the level of statistical significance (–1.18 μm; 95% CI: –3.11, 0.75; p = 0.23).

Figure 1
Figure 1. Retina picture and example of a retinal camera. Annotated retinal fundus picture of the right eye of a healthy volunteer (Left) and a picture of a non-mydriatic digital retinal camera (Right). Please click here to view a larger version of this figure.

Figure 2
Figure 2. Screen shot of IVAN software. Example of a picture that is processed with the IVAN software. The software identifies the vasculature and calculates diameters. The operator supervises the results and identifies arteries (shown in red) and venules (shown in blue). CRAE and CRVE are then calculated automatically. Please click here to view a larger version of this figure.

Figure 3
Figure 3. Association between air pollution and retinal vessel calibers. Estimated change in mean CRAE and CRVE (95% CI) in association with a 10-µg/m³ increase in PM10 (Left) or a 1-µg/m³ increase in BC (Right) for different exposure lags. The data were obtained from a panel of 84 persons. Please click here to view a larger version of this figure.

Figure 4
Figure 4. Please click here to view a larger version of this figure.

Supplemental video. Time lapse video of air pollution concentrations during the panel study.

Subscription Required. Please recommend JoVE to your librarian.

Discussion

Retina image analysis is proposed as a convenient tool for studying microvascular responses in epidemiological studies. When the operator is experienced, it takes less than 5 min to take a fundus picture. Furthermore, this unobtrusive procedure for visualizing the microcirculation can be used for participants from early age up to old age.

Literature is increasing with respect to the associations between morphological changes in the retinal vasculature (for example change in vessel caliber, geometric pattern, etc.) and modifiable lifestyle and environmental risk factors15,16. Experimental and epidemiological works show that short-term and long-term air pollution exposure is strongly associated with cardiovascular morbidity and mortality. However, a convenient technique such as retinal fundus photography has been used very little to study microcirculatory effects that may be induced by air pollutants.

The different steps that are required for obtaining a high-quality fundus picture are explained in this video protocol. Subsequently, the methodology is given for obtaining arteriolar and venular caliber measurements, and more specifically the Central Retinal Arteriolar Equivalent (CRAE) and the Central Retinal Venular Equivalent (CRVE)13,28. The results of the repeated measures analysis showed that the within-rater results for CRAE and CRVE are highly reproducible for pictures that were taken within a timeframe of four days. These findings are in line with the recent observations reported by McCanna and colleagues. The latter authors reported that CRAE and CRVE values are stable over a period of one month. They reported correlations for pairs of study visits of 0.9 and the correlations decreased slightly with an increasing length of time interval31.

Subsequently, it is shown in a panel study with healthy adults that the retinal microcirculation can respond rapidly to particulate matter air pollution. More specifically, a decrease in CRAE that relates to an increased short-term exposure to PM10 and BC is reported24. Narrowing of retinal arterioles is a proxy for estimating the risk of cardiovascular disease and cardiovascular mortality32-35. It is envisioned that retinal microvasculature can be used to probe for cardiovascular effects of air pollution. In this respect, Adar and colleagues reported for the first time about the short-term effects of air pollution on the human retinal microvasculature in a cross-sectional analysis of the MESA cohort21. The microvascular changes reported by Louwies et al. (2013) complement those found by Adar et al. (2010). The latter authors reported a 0.4 µm-decrease in CRAE (95% CI: -0.8, -0.04) per 9-μg/m³ increase in average PM2.5 on the previous day. Based on repeated measurements, Louwies et al. (2013) reported an estimate of -1.2 µm (95% CI: –1.61, –0.61) and it is suggested that the larger effect size may be due to greater variation in PM and BC exposure concentrations in this panel study24.

Pulmonary inflammation and low-grade, systemic inflammation have been associated with exposure to air pollution36. Systemic inflammation has also been linked with endothelial dysfunction37,38. This process may affect the reactivity of retinal blood vessels39. It is assumed that inflammatory responses lead to altered endothelial activity, which may be reflected in the narrowing of the arteriolar calibers. The findings from the panel study suggest that this might occur in a timeframe of less than 24 hr because exposure to PM10 was inversely associated with CRAE during all the hourly exposure windows. The observations are in line with the known impact of air pollution on health. Short-term animal studies with exposure to peak levels of air pollutants have revealed that the microvasculature can be affected40,41. In addition, human intervention studies in controlled environment have shown that endothelial function is impaired upon exposure to diesel exhaust42,43.

In conclusion, many developmental and anatomical similarities exist between retinal blood vessels and the microvasculature of the heart, lungs, and brain10. Therefore, the retinal blood vasculature is considered a surrogate tissue for the systemic microcirculation. A change in retinal blood vessels may be a valuable predictor for cardiovascular disease development. The convenient and unobtrusive analysis of retinal images is now considered useful for population-based studies with a focus on cardiovascular epidemiology. This protocol paper should encourage more research groups to use fundus photography to study microvascular effects of environmental and lifestyle factors.

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

The authors declare they have no actual or potential competing financial interests.

Acknowledgments

The results about the microvascular response to particulate air pollution are reproduced with permission from Environmental Health Perspectives24. The validated meteorological and air quality data were kindly provided by The Belgian Royal Meteorological Institute and the Flemish Environmental Agency. The retinal image analysis software was obtained from Dr. N. Ferrier (Madison School of Engineering and the Fundus Photograph Reading Center, Department of Ophthalmology and Visual Sciences, University of Wisconsin–Madison). Tijs Louwies and Eline Provost are supported with a VITO fellowship. Eline Provost holds an aspirant research fellowship of the Flemish Scientific Fund. Tim S. Nawrot is holder of a European Research Council starting grant.

Materials

Name Company Catalog Number Comments
Canon CR-2 nonmydriatic retinal camera  Hospithera (Brussels, Belgium) http://www.usa.canon.com/cusa/healthcare/products/eyecare/digital_non_mydriatic_retinal_cameras/cr_2. Any other retinal camera with comparable resolution and specifications can be used for the analysis of the retinal microvasculature. Compatibility should  be checked before starting a study.
IVAN: Vessel Measurement Software This software can be used without charge for scientific purpose. It can be obtained by contacting Dr. Nicola Ferrier (Madison School of Engineering and the Fundus Photograph Reading
Center, Department of Ophthalmology and Visual Sciences, University of Wisconsin–Madison). http://directory.engr.wisc.edu/me/faculty/ferrier_nicola. Phone: (608) 265-8793,
Fax: (608) 265-2316 or e-mail: ferrier@engr.wisc.edu
 

DOWNLOAD MATERIALS LIST

References

  1. Clough, G., Cracowski, J. L. Spotlight Issue: Microcirculation-From a Clinical Perspective. Microcirculation. 19, 1-4 (2012).
  2. Tsai, A. G., Johnson, P. C., Intaglietta, M. Oxygen gradients in the microcirculation. Physiological Reviews. 83, 933-963 (2003).
  3. Safar, M. E., Lacolley, P. Disturbance of macro- and microcirculation: relations with pulse pressure and cardiac organ damage. American Journal of Physiology-Heart and Circulatory Physiology. 293, (2007).
  4. Abramoff, M. D., Garvin, M. K., Sonka, M. Retinal imaging and image analysis. IEEE reviews in biomedical engineering. 3, 169-208 (2010).
  5. Tielsch, J. M., et al. A population-based evaluation of glaucoma screening-the Baltimore eye survey. American Journal of Epidemiology. 134, 1102-1110 (1991).
  6. Ciulla, T. A., Amador, A. G., Zinman, B. Diabetic retinopathy and diabetic macular edema - Pathophysiology, screening, and novel therapies. Diabetes Care. 26, 2653-2664 (2003).
  7. De Silva, D. A., et al. Associations of retinal microvascular signs and intracranial large artery disease. Stroke. 42, 812-814 (2011).
  8. Liew, G., et al. Differing associations of white matter lesions and lacunar infarction with retinal microvascular signs. International journal of stroke : official journal of the International Stroke Society. , (2012).
  9. Cheung, C. Y., et al. Microvascular network alterations in the retina of patients with Alzheimer's disease. Alzheimer's & dementia : the journal of the Alzheimer's Association. 10, 135-142 (2014).
  10. Liew, G., Wang, J. J., Mitchell, P., Wong, T. Y. Retinal Vascular Imaging A New Tool in Microvascular Disease Research. Circulation-Cardiovascular Imaging. 1, 156-161 (2008).
  11. McGeechan, K., Liew, G., Wong, T. Y. Are retinal examinations useful in assessing cardiovascular risk. Am J Hypertens. 21, 847 (2008).
  12. McClintic, B. R., McClintic, J. I., Bisognano, J. D., Block, R. C. The relationship between retinal microvascular abnormalities and coronary heart disease: a review. The American Journal of Medicine. 123, (2010).
  13. Hubbard, L. D., et al. Methods for evaluation of retinal microvascular abnormalities associated with hypertension/sclerosis in the atherosclerosis risk in communities study. Ophthalmology. 106, 2269-2280 (1999).
  14. Niemeijer, M., van Ginneken, B., Russell, S. R., Suttorp-Schulten, M. S. A., Abramoff, M. D. Automated detection and differentiation of drusen, exudates, and cotton-wool spots in digital color fundus photographs for diabetic retinopathy diagnosis. Investigative ophthalmology & visual science. 48, 2260-2267 (2007).
  15. Serre, K., Sasongko, M. B. Modifiable Lifestyle and Environmental Risk Factors Affecting the Retinal Microcirculation. Microcirculation. 19, 29-36 (2012).
  16. Sun, C., Wang, J. J., Mackey, D. A., Wong, T. Y. Retinal Vascular Caliber: Systemic, Environmental, and Genetic Associations. Survey of Ophthalmology. 54, 74-95 (2009).
  17. Nawrot, T. S., et al. Stronger associations between daily mortality and fine particulate air pollution in summer than in winter: evidence from a heavily polluted region in western Europe. Journal of Epidemiology and Community Health. 61, 146-149 (2007).
  18. Zanobetti, A., et al. The temporal pattern of respiratory and heart disease mortality in response to air pollution. Environmental Health Perspectives. 111, 1188-1193 (2003).
  19. Brook, R. D., et al. Particulate Matter Air Pollution and Cardiovascular Disease An Update to the Scientific Statement From the American Heart Association. Circulation. 121, 2331-2378 (2010).
  20. Nawrot, T. S., Perez, L., Kunzli, N., Munters, E., Nemery, B. Public health importance of triggers of myocardial infarction: a comparative risk assessment. Lancet. 377, 732-740 (2011).
  21. Adar, S. D., et al. Air Pollution and the Microvasculature: A Cross-Sectional Assessment of In Vivo Retinal Images in the Population-Based Multi-Ethnic Study of Atherosclerosis. Plos Medicine. Plos Medicine, M. E. S. A. ). 7, (2010).
  22. Klein, R., Klein, B. E., Knudtson, M. D., Wong, T. Y., Tsai, M. Y. Are inflammatory factors related to retinal vessel caliber? The Beaver Dam Eye Study. Archives of ophthalmology. 124, 87-94 (2006).
  23. Harris, B., et al. The association of systemic microvascular changes with lung function and lung density: a cross-sectional study. PloS one. 7, (2012).
  24. Louwies, T., Panis, L. I., Kicinski, M., De Boever, P., Nawrot, T. S. Retinal Microvascular Responses to Short-Term Changes in Particulate Air Pollution in Healthy Adults. Environmental Health Perspectives. 121, 1011-1016 (2013).
  25. Barrett, J. R. Particulate Matter and Cardiovascular Disease Researchers Turn an Eye toward Microvascular Changes. Environmental Health Perspectives. 121, (2013).
  26. Gopinath, B., et al. Is quality of diet associated with the microvasculature? An analysis of diet quality and retinal vascular calibre in older adults. The British journal of nutrition. 110, 739-746 (2013).
  27. Kandasamy, Y., Smith, R., Wright, I. M. Relationship between the retinal microvasculature and renal volume in low-birth-weight babies. American journal of perinatology. 30, 477-481 (2013).
  28. Knudtson, M. D., et al. Revised formulas for summarizing retinal vessel diameters. Current Eye Research. 27, 143-149 (2003).
  29. Shrout, P. E., Fleiss, J. L. Intraclass correlations: uses in assessing rater reliability. Psychological bulletin. 86, 420-428 (1979).
  30. Landis, J. R., Koch, G. G. The measurement of observer agreement for categorical data. Biometrics. 33, 159-174 (1977).
  31. McCanna, C. D., et al. Variability of measurement of retinal vessel diameters. Ophthalmic epidemiology. 20, 392-401 (2013).
  32. Cheung, N., et al. Arterial compliance and retinal vascular caliber in cerebrovascular disease. Annals of Neurology. 62, 618-624 (2007).
  33. Wong, T. Y., et al. Retinal microvascular abnormalities and incident stroke: the atherosclerosis risk in communities study. Lancet. 358, 1134-1140 (2001).
  34. Wong, T. Y., et al. Retinal arteriolar narrowing and risk of coronary heart disease in men and women - The atherosclerosis risk in communities study. Jama-Journal of the American Medical Association. 287, 1153-1159 (2002).
  35. Wong, T. Y., et al. The prevalence and risk factors of retinal microvascular abnormalities in older persons - The cardiovascular health study. Ophthalmology. 110, 658-666 (2003).
  36. Hoffmann, B., et al. Chronic Residential Exposure to Particulate Matter Air Pollution and Systemic Inflammatory Markers. Environmental Health Perspectives. 117, 1302-1308 (2009).
  37. Hingorani, A. D., et al. Acute systemic inflammation impairs endothelium-dependent dilatation in humans. Circulation. 102, 994-999 (2000).
  38. Huang, A. L., Vita, J. A. Effects of systemic inflammation on endothelium-dependent vasodilation. Trends in Cardiovascular Medicine. 16, 15-20 (2006).
  39. Nguyen, T. T., et al. Flicker light-induced retinal vasodilation in diabetes and diabetic retinopathy. Diabetes Care. 32, 2075-2080 (2009).
  40. Nurkiewicz, T. R., Porter, D. W., Barger, M., Castranova, V., Boegehold, M. A. Particulate matter exposure impairs systemic microvascular endothelium-dependent dilation. Environmental Health Perspectives. 112, 1299-1306 (2004).
  41. Nurkiewicz, T. R., et al. Systemic microvascular dysfunction and inflammation after pulmonary particulate matter exposure. Environmental Health Perspectives. 114, 412-419 (2006).
  42. Barath, S., et al. Impaired vascular function after exposure to diesel exhaust generated at urban transient running conditions. Particle and Fibre Toxicology. 7, (2010).
  43. Tornqvist, H., et al. Persistent endothelial dysfunction in humans after diesel exhaust inhalation. American Journal of Respiratory and Critical Care Medicine. 176, 395-400 (2007).

Tags

Keywords: Fundus Photography Microvascular Cardiovascular Disease Risk Factors Retinal Vasculature CRAE CRVE Epidemiological Studies Air Pollution Microcirculation
Fundus Photography as a Convenient Tool to Study Microvascular Responses to Cardiovascular Disease Risk Factors in Epidemiological Studies
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

De Boever, P., Louwies, T., Provost, More

De Boever, P., Louwies, T., Provost, E., Int Panis, L., Nawrot, T. S. Fundus Photography as a Convenient Tool to Study Microvascular Responses to Cardiovascular Disease Risk Factors in Epidemiological Studies. J. Vis. Exp. (92), e51904, doi:10.3791/51904 (2014).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

PLAYLIST

  • Research • Medicine
    Estimation of Urinary Nanocrystals in Humans using Calcium Fluorophore Labeling and Nanoparticle Tracking Analysis
  • Research • Medicine
    Development and Evaluation of 3D-Printed Cardiovascular Phantoms for Interventional Planning and Training
  • Research • Medicine
    Human Fetal Blood Flow Quantification with Magnetic Resonance Imaging and Motion Compensation
  • Research • Medicine
    Digital Handwriting Analysis of Characters in Chinese Patients with Mild Cognitive Impairment
  • Research • Medicine
    Segmentation and Linear Measurement for Body Composition Analysis using Slice-O-Matic and Horos
  • Research • Medicine
    Magnetic Resonance Imaging of Multiple Sclerosis at 7.0 Tesla
  • Research • Medicine
    Real-Time Magnetic Resonance Guided Focused Ultrasound for Painful Bone Metastases
  • Research • Medicine
    Isolation of Viable Adipocytes and Stromal Vascular Fraction from Human Visceral Adipose Tissue Suitable for RNA Analysis and Macrophage Phenotyping
  • Research • Medicine
    Obtaining Quality Extended Field-of-View Ultrasound Images of Skeletal Muscle to Measure Muscle Fascicle Length
  • Research • Medicine
    Lung CT Segmentation to Identify Consolidations and Ground Glass Areas for Quantitative Assesment of SARS-CoV Pneumonia
  • Research • Medicine
    Electroretinogram Recording for Infants and Children under Anesthesia to Achieve Optimal Dark Adaptation and International Standards
  • Research • Medicine
    Measurement of Tissue Oxygenation Using Near-Infrared Spectroscopy in Patients Undergoing Hemodialysis
  • Research • Medicine
    Evaluation of Capnography Sampling Line Compatibility and Accuracy when Used with a Portable Capnography Monitor
  • Research • Medicine
    Simultaneous Laryngopharyngeal and Conventional Esophageal pH Monitoring
  • Research • Medicine
    Real-Time Monitoring of Neurocritical Patients with Diffuse Optical Spectroscopies
  • Research • Neuroscience
    Evaluating Postural Control and Lower-extremity Muscle Activation in Individuals with Chronic Ankle Instability
  • Research • Medicine
    Assessment of Dependence in Activities of Daily Living Among Older Patients in an Acute Care Unit
  • Research • Medicine
    Validated LC-MS/MS Panel for Quantifying 11 Drug-Resistant TB Medications in Small Hair Samples
  • Research • Medicine
    International Expert Consensus and Recommendations for Neonatal Pneumothorax Ultrasound Diagnosis and Ultrasound-guided Thoracentesis Procedure
  • Research • Biology
    A Finite Element Approach for Locating the Center of Resistance of Maxillary Teeth
  • Research • Medicine
    Lower Limb Biomechanical Analysis of Healthy Participants
  • Research • Neuroscience
    Assessing Early Stage Open-Angle Glaucoma in Patients by Isolated-Check Visual Evoked Potential
  • Research • Medicine
    Oral Health Assessment by Lay Personnel for Older Adults
  • Research • Medicine
    Determining and Controlling External Power Output During Regular Handrim Wheelchair Propulsion
  • Research • Medicine
    A Whole Body Dosimetry Protocol for Peptide-Receptor Radionuclide Therapy (PRRT): 2D Planar Image and Hybrid 2D+3D SPECT/CT Image Methods
  • Research • Medicine
    Measurement of Carotenoids in Perifovea using the Macular Pigment Reflectometer
  • Research • Medicine
    Assessment of Static Graviceptive Perception in the Roll-Plane using the Subjective Visual Vertical Paradigm
  • Research • Medicine
    Learning Modern Laryngeal Surgery in a Dissection Laboratory
  • Research • Medicine
    DIPLOMA Approach for Standardized Pathology Assessment of Distal Pancreatectomy Specimens
  • Research • Medicine
    A Computerized Functional Skills Assessment and Training Program Targeting Technology Based Everyday Functional Skills
  • Research • Medicine
    Imaging Features of Systemic Sclerosis-Associated Interstitial Lung Disease
  • Research • Medicine
    Integrating Augmented Reality Tools in Breast Cancer Related Lymphedema Prognostication and Diagnosis
  • Research • Medicine
    Ultrasonographic Assessment During Cardiopulmonary Resuscitation
  • Research • Medicine
    Measurement of the Hepatic Venous Pressure Gradient and Transjugular Liver Biopsy
  • Research • Medicine
    Patient Directed Recording of a Bipolar Three-Lead Electrocardiogram using a Smartwatch with ECG Function
  • Research • Medicine
    Traditional Trail Making Test Modified into Brand-new Assessment Tools: Digital and Walking Trail Making Test
  • Research • Medicine
    Use of Magnetic Resonance Imaging and Biopsy Data to Guide Sampling Procedures for Prostate Cancer Biobanking
  • Research • Medicine
    A Fluorescence-based Assay for Characterization and Quantification of Lipid Droplet Formation in Human Intestinal Organoids
  • Research • Medicine
    A Novel Non-invasive Method for the Detection of Elevated Intra-compartmental Pressures of the Leg
  • Research • Medicine
    Quantitative Mapping of Specific Ventilation in the Human Lung using Proton Magnetic Resonance Imaging and Oxygen as a Contrast Agent
  • Research • Neuroscience
    Portable Thermographic Screening for Detection of Acute Wallenberg's Syndrome
  • Research • Medicine
    Use of MRI-ultrasound Fusion to Achieve Targeted Prostate Biopsy
  • Research • Medicine
    Testing of all Six Semicircular Canals with Video Head Impulse Test Systems
  • Research • Medicine
    Protocol and Guidelines for Point-of-Care Lung Ultrasound in Diagnosing Neonatal Pulmonary Diseases Based on International Expert Consensus
  • Research • Neuroscience
    Bilateral Assessment of the Corticospinal Pathways of the Ankle Muscles Using Navigated Transcranial Magnetic Stimulation
  • Research • Medicine
    Targeting Gray Rami Communicantes in Selective Chemical Lumbar Sympathectomy
  • Research • Medicine
    Multi-Modal Home Sleep Monitoring in Older Adults
  • Research • Medicine
    Cardiac Magnetic Resonance for the Evaluation of Suspected Cardiac Thrombus: Conventional and Emerging Techniques
  • Research • Medicine
    Observational Study Protocol for Repeated Clinical Examination and Critical Care Ultrasonography Within the Simple Intensive Care Studies
  • Research • Medicine
    Measurements of Motor Function and Other Clinical Outcome Parameters in Ambulant Children with Duchenne Muscular Dystrophy
  • Research • Medicine
    Assessment of the Efficacy of An Osteopathic Treatment in Infants with Biomechanical Impairments to Suckling
  • Research • Medicine
    Quantification of Levator Ani Hiatus Enlargement by Magnetic Resonance Imaging in Males and Females with Pelvic Organ Prolapse
  • Research • Medicine
    Quantitative [18F]-Naf-PET-MRI Analysis for the Evaluation of Dynamic Bone Turnover in a Patient with Facetogenic Low Back Pain
  • Research • Medicine
    Generation of Human 3D Lung Tissue Cultures (3D-LTCs) for Disease Modeling
  • Research • Medicine
    Proton Therapy Delivery and Its Clinical Application in Select Solid Tumor Malignancies
  • Research • Medicine
    Combining Volumetric Capnography And Barometric Plethysmography To Measure The Lung Structure-function Relationship
  • Research • Medicine
    Two-Dimensional X-Ray Angiography to Examine Fine Vascular Structure Using a Silicone Rubber Injection Compound
  • Research • Medicine
    Preparation, Procedures and Evaluation of Platelet-Rich Plasma Injection in the Treatment of Knee Osteoarthritis
  • Research • Medicine
    Cardiac Magnetic Resonance Imaging at 7 Tesla
  • Research • Medicine
    Semi-quantitative Assessment Using [18F]FDG Tracer in Patients with Severe Brain Injury
  • Research • Medicine
    Handheld Metal Detector Screening for Metallic Foreign Body Ingestion in Children
  • Research • Medicine
    Conducting Maximal and Submaximal Endurance Exercise Testing to Measure Physiological and Biological Responses to Acute Exercise in Humans
  • Research • Medicine
    A Metadata Extraction Approach for Clinical Case Reports to Enable Advanced Understanding of Biomedical Concepts
  • Research • Medicine
    Autonomic Function Following Concussion in Youth Athletes: An Exploration of Heart Rate Variability Using 24-hour Recording Methodology
  • Research • Medicine
    Hydra, a Computer-Based Platform for Aiding Clinicians in Cardiovascular Analysis and Diagnosis
  • Research • Medicine
    Objective Nociceptive Assessment in Ventilated ICU Patients: A Feasibility Study Using Pupillometry and the Nociceptive Flexion Reflex
  • Research • Medicine
    'Boden Food Plate': Novel Interactive Web-based Method for the Assessment of Dietary Intake
  • Research • Medicine
    Anogenital Distance and Perineal Measurements of the Pelvic Organ Prolapse (POP) Quantification System
  • Research • Medicine
    Bedside Ultrasound for Guiding Fluid Removal in Patients with Pulmonary Edema: The Reverse-FALLS Protocol
  • Research • Medicine
    Muscle Imbalances: Testing and Training Functional Eccentric Hamstring Strength in Athletic Populations
  • Research • Medicine
    Isolation of Primary Human Decidual Cells from the Fetal Membranes of Term Placentae
  • Research • Medicine
    Skeletal Muscle Neurovascular Coupling, Oxidative Capacity, and Microvascular Function with 'One Stop Shop' Near-infrared Spectroscopy
  • Research • Medicine
    Collecting Hair Samples for Hair Cortisol Analysis in African Americans
  • Research • Medicine
    In Vivo Morphometric Analysis of Human Cranial Nerves Using Magnetic Resonance Imaging in Menière's Disease Ears and Normal Hearing Ears
  • Research • Medicine
    Measuring the Carotid to Femoral Pulse Wave Velocity (Cf-PWV) to Evaluate Arterial Stiffness
  • Research • Medicine
    Standardized Measurement of Nasal Membrane Transepithelial Potential Difference (NPD)
  • Research • Medicine
    Taste Exam: A Brief and Validated Test
  • Research • Medicine
    Absorption of Nasal and Bronchial Fluids: Precision Sampling of the Human Respiratory Mucosa and Laboratory Processing of Samples
  • Research • Medicine
    Methodology for Sputum Induction and Laboratory Processing
  • Research • Medicine
    Electrophysiological Measurement of Noxious-evoked Brain Activity in Neonates Using a Flat-tip Probe Coupled to Electroencephalography
  • Research • Medicine
    A Detailed Protocol for Physiological Parameters Acquisition and Analysis in Neurosurgical Critical Patients
  • Research • Medicine
    Oral Biofilm Sampling for Microbiome Analysis in Healthy Children
  • Research • Medicine
    Using Retinal Imaging to Study Dementia
  • Research • Medicine
    Application of an Amplitude-integrated EEG Monitor (Cerebral Function Monitor) to Neonates
  • Research • Medicine
    3D Ultrasound Imaging: Fast and Cost-effective Morphometry of Musculoskeletal Tissue
  • Research • Medicine
    The 4-vessel Sampling Approach to Integrative Studies of Human Placental Physiology In Vivo
  • Research • Medicine
    A Component-resolved Diagnostic Approach for a Study on Grass Pollen Allergens in Chinese Southerners with Allergic Rhinitis and/or Asthma
  • Research • Medicine
    A Novel Method: Super-selective Adrenal Venous Sampling
  • Research • Medicine
    A Method for Quantifying Upper Limb Performance in Daily Life Using Accelerometers
  • Research • Medicine
    Non-invasive Assessments of Subjective and Objective Recovery Characteristics Following an Exhaustive Jump Protocol
  • Research • Medicine
    Experimental Protocol of a Three-minute, All-out Arm Crank Exercise Test in Spinal-cord Injured and Able-bodied Individuals
  • Research • Medicine
    Phosphorus-31 Magnetic Resonance Spectroscopy: A Tool for Measuring In Vivo Mitochondrial Oxidative Phosphorylation Capacity in Human Skeletal Muscle
  • Research • Medicine
    Assessment of Pulmonary Capillary Blood Volume, Membrane Diffusing Capacity, and Intrapulmonary Arteriovenous Anastomoses During Exercise
  • Research • Medicine
    Assessment of Child Anthropometry in a Large Epidemiologic Study
  • Research • Medicine
    Video Movement Analysis Using Smartphones (ViMAS): A Pilot Study
  • Research • Medicine
    Network Analysis of Foramen Ovale Electrode Recordings in Drug-resistant Temporal Lobe Epilepsy Patients
  • Research • Medicine
    A Model to Simulate Clinically Relevant Hypoxia in Humans
  • Research • Medicine
    Interictal High Frequency Oscillations Detected with Simultaneous Magnetoencephalography and Electroencephalography as Biomarker of Pediatric Epilepsy
  • Research • Medicine
    Induction and Assessment of Exertional Skeletal Muscle Damage in Humans
  • Research • Medicine
    A Detailed Protocol for Perspiration Monitoring Using a Novel, Small, Wireless Device
  • Research • Medicine
    Drug-Induced Sleep Endoscopy (DISE) with Target Controlled Infusion (TCI) and Bispectral Analysis in Obstructive Sleep Apnea
  • Research • Medicine
    Integrated Compensatory Responses in a Human Model of Hemorrhage
  • Research • Medicine
    Transthoracic Speckle Tracking Echocardiography for the Quantitative Assessment of Left Ventricular Myocardial Deformation
  • Research • Medicine
    Impression Cytology of the Lid Wiper Area
  • Research • Behavior
    A Protocol of Manual Tests to Measure Sensation and Pain in Humans
  • Research • Medicine
    Unbiased Deep Sequencing of RNA Viruses from Clinical Samples
  • Research • Medicine
    A Choroid Plexus Epithelial Cell-based Model of the Human Blood-Cerebrospinal Fluid Barrier to Study Bacterial Infection from the Basolateral Side
  • Research • Medicine
    Isolation and Profiling of MicroRNA-containing Exosomes from Human Bile
  • Research • Medicine
    Generation of Microtumors Using 3D Human Biogel Culture System and Patient-derived Glioblastoma Cells for Kinomic Profiling and Drug Response Testing
  • Research • Medicine
    Ultrasound Assessment of Endothelial Function: A Technical Guideline of the Flow-mediated Dilation Test
  • Research • Medicine
    Using a Laminating Technique to Perform Confocal Microscopy of the Human Sclera
  • Research • Medicine
    Intravenous Endotoxin Challenge in Healthy Humans: An Experimental Platform to Investigate and Modulate Systemic Inflammation
  • Research • Medicine
    Modeling and Simulations of Olfactory Drug Delivery with Passive and Active Controls of Nasally Inhaled Pharmaceutical Aerosols
  • Research • Medicine
    Exosomal miRNA Analysis in Non-small Cell Lung Cancer (NSCLC) Patients' Plasma Through qPCR: A Feasible Liquid Biopsy Tool
  • Research • Medicine
    A Multimodal Imaging- and Stimulation-based Method of Evaluating Connectivity-related Brain Excitability in Patients with Epilepsy
  • Research • Medicine
    Measuring Cardiac Autonomic Nervous System (ANS) Activity in Toddlers - Resting and Developmental Challenges
  • Research • Medicine
    Using Saccadometry with Deep Brain Stimulation to Study Normal and Pathological Brain Function
  • Research • Medicine
    Quantitative Fundus Autofluorescence for the Evaluation of Retinal Diseases
  • Research • Medicine
    Diagnosis of Musculus Gastrocnemius Tightness - Key Factors for the Clinical Examination
  • Research • Medicine
    Stereo-Electro-Encephalo-Graphy (SEEG) With Robotic Assistance in the Presurgical Evaluation of Medical Refractory Epilepsy: A Technical Note
  • Research • Medicine
    Quantitative Magnetic Resonance Imaging of Skeletal Muscle Disease
  • Research • Medicine
    Transcutaneous Microcirculatory Imaging in Preterm Neonates
  • Research • Medicine
    Using an Ingestible Telemetric Temperature Pill to Assess Gastrointestinal Temperature During Exercise
  • Research • Medicine
    Design, Fabrication, and Administration of the Hand Active Sensation Test (HASTe)
  • Research • Medicine
    MRI-guided dmPFC-rTMS as a Treatment for Treatment-resistant Major Depressive Disorder
  • Research • Medicine
    Functional Human Liver Preservation and Recovery by Means of Subnormothermic Machine Perfusion
  • Research • Medicine
    A Multicenter MRI Protocol for the Evaluation and Quantification of Deep Vein Thrombosis
  • Research • Medicine
    Determining The Electromyographic Fatigue Threshold Following a Single Visit Exercise Test
  • Research • Medicine
    Use of Electromagnetic Navigational Transthoracic Needle Aspiration (E-TTNA) for Sampling of Lung Nodules
  • Research • Medicine
    Trabecular Meshwork Response to Pressure Elevation in the Living Human Eye
  • Research • Medicine
    In Vivo, Percutaneous, Needle Based, Optical Coherence Tomography of Renal Masses
  • Research • Medicine
    Establishment of Human Epithelial Enteroids and Colonoids from Whole Tissue and Biopsy
  • Research • Medicine
    Human Brown Adipose Tissue Depots Automatically Segmented by Positron Emission Tomography/Computed Tomography and Registered Magnetic Resonance Images
  • Research • Medicine
    Preparation and Respirometric Assessment of Mitochondria Isolated from Skeletal Muscle Tissue Obtained by Percutaneous Needle Biopsy
  • Research • Medicine
    A Methodological Approach to Non-invasive Assessments of Vascular Function and Morphology
  • Research • Medicine
    Isolation and Immortalization of Patient-derived Cell Lines from Muscle Biopsy for Disease Modeling
  • Research • Medicine
    State of the Art Cranial Ultrasound Imaging in Neonates
  • Research • Medicine
    Measurement of Dynamic Scapular Kinematics Using an Acromion Marker Cluster to Minimize Skin Movement Artifact
  • Research • Medicine
    The Supraclavicular Fossa Ultrasound View for Central Venous Catheter Placement and Catheter Change Over Guidewire
  • Research • Medicine
    Ultrasound Assessment of Endothelial-Dependent Flow-Mediated Vasodilation of the Brachial Artery in Clinical Research
  • Research • Medicine
    Tracking the Mammary Architectural Features and Detecting Breast Cancer with Magnetic Resonance Diffusion Tensor Imaging
  • Research • Medicine
    A Neuroscientific Approach to the Examination of Concussions in Student-Athletes
  • Research • Medicine
    DTI of the Visual Pathway - White Matter Tracts and Cerebral Lesions
  • Research • Medicine
    Collection, Isolation, and Flow Cytometric Analysis of Human Endocervical Samples
  • Research • Medicine
    Fundus Photography as a Convenient Tool to Study Microvascular Responses to Cardiovascular Disease Risk Factors in Epidemiological Studies
  • Research • Medicine
    A Multi-Modal Approach to Assessing Recovery in Youth Athletes Following Concussion
  • Research • Medicine
    Clinical Assessment of Spatiotemporal Gait Parameters in Patients and Older Adults
  • Research • Medicine
    Multi-electrode Array Recordings of Human Epileptic Postoperative Cortical Tissue
  • Research • Medicine
    Collection and Extraction of Saliva DNA for Next Generation Sequencing
  • Research • Medicine
    Fast and Accurate Exhaled Breath Ammonia Measurement
  • Research • Medicine
    Developing Neuroimaging Phenotypes of the Default Mode Network in PTSD: Integrating the Resting State, Working Memory, and Structural Connectivity
  • Research • Medicine
    Two Methods for Establishing Primary Human Endometrial Stromal Cells from Hysterectomy Specimens
  • Research • Medicine
    Assessment of Vascular Function in Patients With Chronic Kidney Disease
  • Research • Medicine
    Coordinate Mapping of Hyolaryngeal Mechanics in Swallowing
  • Research • Medicine
    Network Analysis of the Default Mode Network Using Functional Connectivity MRI in Temporal Lobe Epilepsy
  • Research • Medicine
    EEG Mu Rhythm in Typical and Atypical Development
  • Research • Medicine
    The Multiple Sclerosis Performance Test (MSPT): An iPad-Based Disability Assessment Tool
  • Research • Medicine
    Isolation and Functional Characterization of Human Ventricular Cardiomyocytes from Fresh Surgical Samples
  • Research • Medicine
    Dynamic Visual Tests to Identify and Quantify Visual Damage and Repair Following Demyelination in Optic Neuritis Patients
  • Research • Medicine
    Primary Culture of Human Vestibular Schwannomas
  • Research • Medicine
    Utility of Dissociated Intrinsic Hand Muscle Atrophy in the Diagnosis of Amyotrophic Lateral Sclerosis
  • Research • Medicine
    Lesion Explorer: A Video-guided, Standardized Protocol for Accurate and Reliable MRI-derived Volumetrics in Alzheimer's Disease and Normal Elderly
  • Research • Medicine
    Pulse Wave Velocity Testing in the Baltimore Longitudinal Study of Aging
  • Research • Medicine
    Isolation, Culture, and Imaging of Human Fetal Pancreatic Cell Clusters
  • Research • Medicine
    3D-Neuronavigation In Vivo Through a Patient's Brain During a Spontaneous Migraine Headache
  • Research • Medicine
    A Novel Application of Musculoskeletal Ultrasound Imaging
  • Research • Medicine
    Computerized Dynamic Posturography for Postural Control Assessment in Patients with Intermittent Claudication
  • Research • Medicine
    Collecting Saliva and Measuring Salivary Cortisol and Alpha-amylase in Frail Community Residing Older Adults via Family Caregivers
  • Research • Medicine
    Diffusion Tensor Magnetic Resonance Imaging in the Analysis of Neurodegenerative Diseases
  • Research • Medicine
    Transcriptomic Analysis of Human Retinal Surgical Specimens Using jouRNAl
  • Research • Medicine
    Improved Protocol For Laser Microdissection Of Human Pancreatic Islets From Surgical Specimens
  • Research • Medicine
    Evaluation of Respiratory Muscle Activation Using Respiratory Motor Control Assessment (RMCA) in Individuals with Chronic Spinal Cord Injury
  • Research • Medicine
    Minimal Erythema Dose (MED) Testing
  • Research • Medicine
    Measuring Cardiac Autonomic Nervous System (ANS) Activity in Children
  • Research • Medicine
    Collecting And Measuring Wound Exudate Biochemical Mediators In Surgical Wounds
  • Research • Medicine
    A Research Method For Detecting Transient Myocardial Ischemia In Patients With Suspected Acute Coronary Syndrome Using Continuous ST-segment Analysis
  • Research • Medicine
    Using a Chemical Biopsy for Graft Quality Assessment
  • Research • Medicine
    Characterizing Exon Skipping Efficiency in DMD Patient Samples in Clinical Trials of Antisense Oligonucleotides
  • Research • Medicine
    In Vitro Assessment of Cardiac Function Using Skinned Cardiomyocytes
  • Research • Medicine
    Normothermic Ex Situ Heart Perfusion in Working Mode: Assessment of Cardiac Function and Metabolism
  • Research • Medicine
    Evaluation of Vascular Control Mechanisms Utilizing Video Microscopy of Isolated Resistance Arteries of Rats
  • Research • Medicine
    Bronchoalveolar Lavage (BAL) for Research; Obtaining Adequate Sample Yield
  • Research • Medicine
    Non-invasive Optical Measurement of Cerebral Metabolism and Hemodynamics in Infants
  • Research • Medicine
    Tilt Testing with Combined Lower Body Negative Pressure: a "Gold Standard" for Measuring Orthostatic Tolerance
  • Research • Medicine
    Driving Simulation in the Clinic: Testing Visual Exploratory Behavior in Daily Life Activities in Patients with Visual Field Defects
  • Research • Medicine
    Isolation, Characterization and Comparative Differentiation of Human Dental Pulp Stem Cells Derived from Permanent Teeth by Using Two Different Methods
  • Research • Medicine
    Portable Intermodal Preferential Looking (IPL): Investigating Language Comprehension in Typically Developing Toddlers and Young Children with Autism
  • Research • Medicine
    Intraoperative Detection of Subtle Endometriosis: A Novel Paradigm for Detection and Treatment of Pelvic Pain Associated with the Loss of Peritoneal Integrity
  • Research • Medicine
    The Use of Primary Human Fibroblasts for Monitoring Mitochondrial Phenotypes in the Field of Parkinson's Disease
  • Research • Medicine
    Collection Protocol for Human Pancreas
  • Research • Medicine
    The α-test: Rapid Cell-free CD4 Enumeration Using Whole Saliva
  • Research • Medicine
    The Measurement and Treatment of Suppression in Amblyopia
  • Research • Medicine
    Corneal Donor Tissue Preparation for Endothelial Keratoplasty
  • Research • Medicine
    Quantification of Atherosclerotic Plaque Activity and Vascular Inflammation using [18-F] Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography (FDG-PET/CT)
  • Research • Medicine
    Eye Tracking Young Children with Autism
  • Research • Medicine
    Doppler Optical Coherence Tomography of Retinal Circulation
  • Research • Medicine
    Utilizing Transcranial Magnetic Stimulation to Study the Human Neuromuscular System
  • Research • Medicine
    Detection and Genogrouping of Noroviruses from Children's Stools By Taqman One-step RT-PCR
  • Research • Medicine
    Method to Measure Tone of Axial and Proximal Muscle
  • Research • Medicine
    The Trier Social Stress Test Protocol for Inducing Psychological Stress
  • Research • Medicine
    Probing the Brain in Autism Using fMRI and Diffusion Tensor Imaging
  • Research • Medicine
    Multifocal Electroretinograms
  • Research • Medicine
    Isolation of Human Islets from Partially Pancreatectomized Patients
  • Research • Medicine
    Examining the Characteristics of Episodic Memory using Event-related Potentials in Patients with Alzheimer's Disease
  • Research • Medicine
    Magnetic Resonance Imaging Quantification of Pulmonary Perfusion using Calibrated Arterial Spin Labeling
  • Research • Medicine
    Manual Muscle Testing: A Method of Measuring Extremity Muscle Strength Applied to Critically Ill Patients
  • Research • Medicine
    Expired CO2 Measurement in Intubated or Spontaneously Breathing Patients from the Emergency Department
  • Research • Medicine
    A Protocol for Comprehensive Assessment of Bulbar Dysfunction in Amyotrophic Lateral Sclerosis (ALS)
  • Research • Medicine
    An Investigation of the Effects of Sports-related Concussion in Youth Using Functional Magnetic Resonance Imaging and the Head Impact Telemetry System
  • Research • Medicine
    Corneal Confocal Microscopy: A Novel Non-invasive Technique to Quantify Small Fibre Pathology in Peripheral Neuropathies
  • Research • Medicine
    Methods to Quantify Pharmacologically Induced Alterations in Motor Function in Human Incomplete SCI
  • Research • Medicine
    Multispectral Real-time Fluorescence Imaging for Intraoperative Detection of the Sentinel Lymph Node in Gynecologic Oncology
  • Research • Medicine
    Technique to Collect Fungiform (Taste) Papillae from Human Tongue
  • Research • Medicine
    Assessing Endothelial Vasodilator Function with the Endo-PAT 2000
  • Research • Medicine
    Making Sense of Listening: The IMAP Test Battery
  • Research • Medicine
    An Experimental Paradigm for the Prediction of Post-Operative Pain (PPOP)
  • Research • Biology
    Bioelectric Analyses of an Osseointegrated Intelligent Implant Design System for Amputees
  • Research • Biology
    Demonstration of Cutaneous Allodynia in Association with Chronic Pelvic Pain
  • Get cutting-edge science videos from JoVE sent straight to your inbox every month.

    Waiting X
    Simple Hit Counter