Summary

En enkel og hurtig protokol til ikke-enzymatisk dissociere frisk humant væv til analyse af lymfocytter

Published: December 06, 2014
doi:

Summary

This protocol describes the rapid non-enzymatic dissociation of fresh human tissue fragments for qualitative and quantitative assessment of CD45+ cells (lymphocytes/leukocytes) present in various normal and malignant human tissues. Additionally, the supernatant obtained from the primary tissue homogenate can be collected and stored for further analysis or experimentation.

Abstract

Evnen af ​​maligne celler til at unddrage sig immunsystemet, kendetegnet ved, tumorundvigelse fra både medfødte og adaptive immunrespons, er nu accepteret som et vigtigt kendetegn for cancer. Vores forskning i brystkræft fokuserer på den aktive rolle, tumorinfiltrerende lymfocytter spille i tumor progression og patient resultat. Mod dette mål, udviklede vi en metode til hurtig isolering af intakte lymfoide celler fra normale og unormale væv i et forsøg på at vurdere dem nærmest til deres oprindelige tilstand. Homogenater fremstillet ved hjælp af en mekanisk dissociator show både øget rentabilitet og celle opsving mens overfladen receptorekspression forhold til enzym-fordøjede væv bevares. Desuden har enzymatisk nedbrydning af det resterende uopløselige materiale ikke gendanne yderligere CD45 + celler indikerer, at kvantitative og kvalitative målinger i det primære homogenat sandsynligvis reelt afspejler infiltrerende delpopulationer i vævet Fragment. De lymfoide celler i disse homogenater kan let karakteriseres ved immunologiske (fænotype, proliferation, etc.) eller molekylær (DNA, RNA og / eller protein) nærmer sig. CD45 + celler kan også anvendes til subpopulation oprensning in vitro ekspansion eller kryopræservering. En yderligere fordel ved denne fremgangsmåde er, at den primære væv supernatanten fra homogenaterne kan anvendes til at karakterisere og sammenligne cytokiner, kemokiner, immunoglobuliner og antigener til stede i normale og maligne væv. Denne protokol fungerer særdeles godt for menneskerettighederne brystvæv og bør gælde for en lang række af normale og unormale væv.

Introduction

The tumor microenvironment is composed of various cell types with numerous studies showing they each play distinct and important roles in tumorigenesis1,2. These include, but are not limited to, infiltrating immune cells, stromal cells, endothelial cells and tumor cells3. Ex vivo studies of tumor infiltrating lymphocytes (TIL; CD45+ cells or leukocytes, which are predominantly lymphocytes in breast tumors) from fresh human tissue samples is made difficult by their low frequency, the small sample sizes often available for research and the potential for loss of viability during extraction. Because immune cells infiltrating tumors are usually present as passengers rather than permanent residents in general they are easier to release from the tissue matrix.

Dissociating tumor tissue while maintaining cellular integrity is technically challenging and has traditionally been performed using a combination of mechanical and enzymatic steps to prepare single cell suspensions4-8. This approach involves lengthy incubation periods and is associated with a significant reduction in cell viability as well as the loss of cell surface receptors by enzymatic cleavage. High quality flow cytometric studies characterizing TIL in the tumor microenvironment as well as clean purifications of CD45+ subpopulations by flow cytometry or antibody-coated beads are more difficult to achieve from enzyme-digested tumor tissue. In addition, the supernatant (SN) from the resulting tumor homogenate is not amenable to further analysis including quantification of secreted proteins (cytokines, chemokines, immunoglobulins or tumor antigens) or experimental treatment of normal cells, because of the potential for protein degradation in the enzymatic digests.

In our search for a method to prepare single cell homogenates from breast tissues [including tumor, non-adjacent non-tumor (NANT) and normal (from mammary reductions) breast tissues] without enzymatic digestion, we tested a variety of mechanical homogenization techniques. Homogenates prepared using a mechanical dissociator had increased cell viability (2-fold) and total cell recovery (2-fold) while preserving surface receptor expression. Enzymatic digestion of the remaining insoluble material did not recover additional CD45+ cells suggesting they were all released in the initial homogenate. Thus, this rapid and simple approach allows both qualitative and quantitative assessment of the CD45+ subpopulations present in various normal and malignant human tissues. An added advantage of this approach is that the SN from the initial homogenate (primary tissue SN) can be collected and stored for further analysis or experimentation.

Protocol

BEMÆRK: Alle enheder er anskaffet ved hjælp af en protokol, der er godkendt af Medical Ethics Committee for Institut Jules Bordet med skriftligt informeret samtykke opnået fra hver patient. 1. Fremstilling af vævshomogenat Dissekere resektion væv (maligne og normalt væv resekteret fra operationsstuen) er i patologi laboratorium af uddannet personale til øjeblikkelig afhentning. Tumor, NANT (taget længst afstand fra tumoren som muligt) og normale vævsfragmenter rutinemæss…

Representative Results

Enzymatisk fordøjelse af vævsfragmenter med enten kommercielt tilgængelige væv dissociation opløsninger eller forskellige laboratorie blandinger af collagenase, DNase og / eller hyaluronidase-inhibitorer, spalte en lang række af receptorer på overfladen af ​​celler. Vore studier, i første omgang fokuseret på CD4 + T-celler infiltrerer brysttumorer, blev hurtigt præsenteret med et stort teknisk problem på grund af spaltning af overflade- CD4-receptorer ved hjælp af standard enzymatisk fordøjel…

Discussion

Denne undersøgelse beskriver en optimeret fremgangsmåde til hurtig fremstilling af normale og maligne bryst vævshomogenater uden enzymatisk fordøjelse til efterfølgende cellesortering, ekstraktion, kryopræservering og / eller fænotypisk analyse af CD45 + subpopulationer. Målet med denne eksperimentelle fremgangsmåde er at producere billeder af TIL, der nøje afspejler deres in vivo tilstand og sammenligne dem med normale væv med minimal manipulation af væv frisk fra operationsstuen. Hidtil…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Dette arbejde blev støttet af tilskud fromthe belgiske fond for videnskabelig forskning (FNRS), Les Amis de l'Institut Bordet, FNRS bejde Télévie, Plan Cancer Belgien, Fonds Lambeau-Marteaux, Fonds JC Heuson og Fonds Barsy.

Materials

Equipment Company Catalog Number Comments/Description
GentleMacs Dissociator  Miltenyi Biotec 130-093-235 BD Medimachine is somewhat equivalent
Centrifuge 5810 R Eppendorf N/A or other standard table top centrifuge
Centrifuge 5417 R Eppendorf N/A or other standard microcentrifuge
Esco Class II A2 Biosafety Cabinet ESCO global N/A or other standard BSL2 hood
Inverted Microscope Nikon eclipse TS100 N/A or other microscope compatible for a hemacytometer
Bürker Chamber Marienfield  640210 or other standard hemacytometer
Navios Flow Cytometer Beckman Coulter N/A or other flow cytometer (8-10 color recommended)
Materials Company Catalog Number Comments/Description
GentleMacs C-Tube Miltenyi Biotec 130-096-344 BD Medimachine uses Filcon
Cell Culture Dish Sarstedt 72,710 or other non-pyrogenic plasticware 
Disposable Scalpel Swann-Morton 0510 or standard single use sterile scalpel
BD Cell Strainer 40µm Becton Dickinson 734-0002 or other non-pyrogenic plasticware 
BD Falcon Tube 50mL Becton Dickinson 352070 or other non-pyrogenic plasticware 
BD Falcon Tube 15mL Becton Dickinson 352097 or other non-pyrogenic plasticware 
BD FACS Tube 5mL Becton Dickinson 352008 or other non-pyrogenic plasticware 
Sterile Pasteur Pipette 5 mL  VWR 612-1685 or other non-pyrogenic plasticware 
Microfuge Tube 1.5 mL Eppendorf 7805-00 or other non-pyrogenic plasticware 
Reagents Company Catalog Number Comments/Description
X-Vivo 20 Lonza BE04-448Q serum-free medium recommended
Phosphate buffered saline Lonza BE17-516F standard physiological PBS
Trypan blue  VWR 17942E or other vital stain
VersaLyse Beckman Coulter A09777 for flow cytometry experiments
Fixable viability Dye eFluor 780  eBioscience 65-0865-14 for flow cytometry experiments
anti-CD3 FITC BD Biosciences 345763 for flow cytometry experiments
anti-CD3 Vio Blue Miltenyi Biotec 130-094-363 for flow cytometry experiments
anti-CD4 PE BD Biosciences 345769 for flow cytometry experiments
anti-CD4 APC Miltenyi Biotec 130-091-232 for flow cytometry experiments
anti-CD8 ECD Beckman Coulter 737659 for flow cytometry experiments
anti-CD8 PerCP BD Biosciences 345774 for flow cytometry experiments
anti-CD19 APC-Vio770 Miltenyi Biotec 130-096-643 for flow cytometry experiments
anti-CD45 VioGreen Miltenyi Biotec 130-096-906 for flow cytometry experiments

References

  1. Chen, D. S., Mellman, I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 39 (1), 1-10 (2013).
  2. Boudreau, A., van’t Veer, J. L., Bissell, M. J. An ‘elite hacker’: breast tumors exploit the normal microenvironment program to instruct their progression and biological diversity. Cell Adh Migr. 6 (3), 236-248 (2012).
  3. Gajewski, T. F., Schreiber, H., Fu, Y. X. Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol. 14 (10), 1014-1022 (2013).
  4. Quezada, S. A., et al. Limited tumor infiltration by activated T effector cells restricts the therapeutic activity of regulatory T cell depletion against established melanoma. J Exp Med. 205 (9), 2125-2138 (2008).
  5. Grange, C., et al. Phenotypic characterization and functional analysis of human tumor immune infiltration after mechanical and enzymatic disaggregation. J Immunol Methods. 372 (1-2), 119-126 (2011).
  6. McCauley, H. A., Guasch, G. Serial orthotopic transplantation of epithelial tumors in single-cell suspension. Methods Mol Biol. 1035, 231-245 (2013).
  7. Gros, A., et al. Myeloid cells obtained from the blood but not from the tumor can suppress T-cell proliferation in patients with melanoma. Clin Cancer Res. 18 (19), 5212-5223 (2012).
  8. Zirakzadeh, A. A., Marits, P., Sherif, A., Winqvist, O. Multiplex B cell characterization in blood, lymph nodes, and tumors from patients with malignancies. J Immunol. 190 (11), 5847-5855 (2013).
  9. Gu-Trantien, C., et al. CD4(+) follicular helper T cell infiltration predicts breast cancer survival. J Clin Invest. 123 (7), 2873-2892 (2013).
  10. Buisseret, L., et al. Lymphocytes Infiltrating Breast Cancer : Density, Composition And Organization. Annals of Oncology. 25 (1), 17 (2014).
  11. Garaud, S., et al. Characterization of B Cells Infiltrating Human Breast Cancer. Annals of Oncology. 25 (1), 18 (2014).
  12. Gu-Trantien, C., et al. Cxcl13-Producing Follicular Helper T Cells In Human Breast Cancer. Annals of Oncology. 25 (1), 17 (2014).
  13. Yee, C. The use of endogenous T cells for adoptive transfer. Immunol Rev. 257 (1), 250-263 (2014).
  14. Butler, M. O., et al. Ex vivo expansion of human CD8+ T cells using autologous CD4+ T cell help. PLoS One. 7 (1), 30229 (2012).
  15. Ye, Q., et al. Engineered artificial antigen presenting cells facilitate direct and efficient expansion of tumor infiltrating lymphocytes. J Transl Med. 9, 131 (2011).
check_url/52392?article_type=t

Play Video

Cite This Article
Garaud, S., Gu-Trantien, C., Lodewyckx, J., Boisson, A., De Silva, P., Buisseret, L., Migliori, E., Libin, M., Naveaux, C., Duvillier, H., Willard-Gallo, K. A Simple and Rapid Protocol to Non-enzymatically Dissociate Fresh Human Tissues for the Analysis of Infiltrating Lymphocytes. J. Vis. Exp. (94), e52392, doi:10.3791/52392 (2014).

View Video