Summary

Brug af elektroretinogrammet at vurdere Funktion i gnaver Retina og beskyttende virkninger af fjernbetjening Limb iskæmisk prækonditionering

Published: June 09, 2015
doi:

Summary

The electroretinogram (ERG) is an electrical potential generated by the retina in response to light. This paper describes how to use the ERG to assess retinal function, in dark-adapted rats, and how it can be can be used to assess a neuroprotective intervention, in the present case remote ischemic preconditioning.

Abstract

The ERG is the sum of all retinal activity. The ERG is usually recorded from the cornea, which acts as an antenna that collects and sums signals from the retina. The ERG is a sensitive measure of changes in retinal function that are pan-retinal, but is less effective for detecting damage confined to a small area of retina. In the present work we describe how to record the ‘flash’ ERG, which is the potential generated when the retina is exposed to a brief light flash. We describe methods of anaesthesia, mydriasis and corneal management during recording; how to keep the retina dark adapted; electrode materials and placement; the range and calibration of stimulus energy; recording parameters and the extraction of data. We also describe a method of inducing ischemia in one limb, and how to use the ERG to assess the effects of this remote-from-the-retina ischemia on retinal function after light damage. A two-flash protocol is described which allows isolation of the cone-driven component of the dark-adapted ERG, and thereby the separation of the rod and cone components. Because it can be recorded with techniques that are minimally invasive, the ERG has been widely used in studies of the physiology, pharmacology and toxicology of the retina. We describe one example of this usefulness, in which the ERG is used to assess the function of the light-damaged retina, with and without a neuroprotective intervention; preconditioning by remote ischemia.

Introduction

ERG er et elektrisk potentiale genereret af nethinden som reaktion på lys og registreres fra hornhindens overflade af øjet. Når betingelserne for optagelse styres omhyggeligt, kan ERG anvendes i en række forskellige måder at vurdere retinal funktion. Her beskrev vi, hvordan at registrere »flash ERG«, potentialet genereres, når nethinden udsættes for en kort, lyse flash præsenteret i en Ganzfeld baggrund. Den Ganzfeld spreder lyset homogent og lysglimt når hele nethinden ca. ensartet. Hvis nethinden er mørkt tilpasset før optagelse, og den mørke-tilpasning opretholdes som dyret er forberedt til optagelse, ERG opnåede genereres af både stang og kegle fotoreceptorer.

Den mørke-tilpassede flash ERG har en karakteristisk bølgeform, som er blevet analyseret på to måder. For det første har tidlige og sene komponenter af ERG bølgeform blevet adskilt og knyttet til sekvensen af ​​neuronal aktivering i nethinden. Den tidligste komponent er en kort latenstid negativt gående potentiale, a-wave (figur 1). Dette efterfølges af en positivt gående potentiale, kaldet b-bølgen. Den stigende fase af b-bølgen viser svingninger, som betragtes som et separat element (oscillerende potentialer eller OP). A-bølge anses at blive genereret af fotoreceptorer, b-bølgen af celler i det indre nukleare lag og OP ved amacrine celler 1.

Baseret på stimulus styrke, reaktioner på blinker meget dim betegnet er muligt scotopic reaktionstærskel. Den scotopic tærskel respons forstås at blive genereret fra retinale ganglieceller 2-4. For det andet kan flash ERG være adskilt af lys tilpasning, eller af en to flash protokol beskrevet nedenfor, til stang- og kegle-drevne komponenter. Under fotopiske forhold, a-bølge ikke påvises i rotter, fordi keglen befolkning er lav, men OP og en b-bølge erklar 5. I primater, hvis nethinder har højere kegle populationer, både stang- og kegle- veje genererer et påviseligt en-bølge 6.

To nyttige foranstaltninger ofte udvundet fra flash-ERG er amplituderne af a- og b-bølgerne, målt som i figur 1, med typiske flash responser vist i figur 2. Når fotoreceptor befolkning er reduceret, for eksempel ved udsættelse for et skadeligt niveau lyse lys, er alle komponenter af ERG reduceret. Neuroprotektive interventioner, såsom remote iskæmisk konditionering (RIP), kan godkendes af bevarelsen af amplituder af a- og b-bølger (Figur 3). Sammenfattende analyse af ERG muliggør sammenligninger mellem sund, lys beskadiget og neuroprotected nethinden.

Protocol

Denne protokol følger retningslinjerne fra University of Sydney dyr pleje. 1. Making Elektroder Konstruere den positive elektrode (den, der vil kontakte hornhinden) fra en kort (5 cm) længde af platintråd 1-2 mm i diameter. Mode den ind i en løkke nogle få mm i diameter. Forbind denne løkke til en konventionel bly, længe nok til at nå input fase af forstærkeren (se figur 4). Konstruere den negative elektrode (som vil gå i dyrets mund) under anv…

Representative Results

Den protokol kan bruges til at måle synsfunktion af gnaver nethinden in vivo. A-bølge, en måling af fotoreceptor funktion, og b-bølge, et mål for den indre nethinde funktion, er kommenteret i figur 1. Stangen-dominerede ERG signal stiger med stigende lysstimulus, som vist i figur 2A. A-bølge viser sig på ~ 0,4 log scot cd.sm -2 og amplituden af A-bølge øges indtil mætning på 2,5 log scot cd.sm -2 (ikke vist). Den dob…

Discussion

Den mørke-tilpassede flash ERG fremgangsmåde beskrevet ovenfor er en pålidelig metode til vurdering af nethindens funktion hos rotter. Både a-bølge og b-bølge blev reduceret med lys skader. Remote iskæmisk prækonditionering afbødes lysskade-inducerede reduktioner i a-bølge og b-bølge. Denne bevarelse af nethindens funktion antyder, at remote iskæmisk prækonditionering har fremkaldt neurobeskyttelse, der ligner andre former for beskyttende forkonditionering såsom hypoksi, iskæmi og motion 8-10.

Disclosures

The authors have nothing to disclose.

Acknowledgements

Forfatterne er taknemmelige for den hjælp fra fru Sharon Spana i gnavere overvågning, håndtering og eksperimentering. Ph.d. finansieringsstøtte er leveret af University of Sydney og australske Forskningscenter for Excellence i Vision.

Materials

PC computer
Powerlab, 4 channel acquistion hardware AD Instruments PL 35044 Acquistion of ERG
Animal Bio Amp AD Instruments FE 136 Amplifier for ERG
Lab chart AD Instruments Signal collection software
Ganzfield Photometric solutions FS-250A Light stimulus
Ganzfield operating system Photometric solutions
Research Radiometer International light technologies ILT-1700 calibrate light series
Lux meter LX-1010B  check red light illumanation
Excel microsoft
Lead wires AD Instruments Connect postive, negative ground electrodes to amplifier
Lead wires -aligator AD Instruments ground ganzfield and acquistion hardware to computer
Platinum wire 95% A&E metals postive electrode
Mouth electrode Ag/AgCl Pellet SDR E205 negative electode
26 gauge needle BD ground electode
Water pump
Water bath
Tubing
Homeothermic blanket system with flexible probe Harvard Appartus 507222F
Atropine 1% w/v Bausch & Lomb topical mydriasis
Proxmethycaine 0.5% w/v Bausch & Lomb topical anaesthetic
Visco tears eye drops Novartis carbomer polymer
Thread retract eye lid
Tweezers
Reusable adhesive Blu tac Dim red headlamp. Affix electrodes
Absorbent bedding
Ketamil – ketamine 100 mg/ml – 50 ml Troy Laboratories Pty Ltd dissociative
Xylium – Xylazine 100 mg/ml – 50 ml Troy Laboratories Pty Ltd muscle relaxant
Scale

References

  1. Arden, G. B., Heckenlively, J. . Principles and practice of clinical electrophysiology of vision. , 139-183 (2006).
  2. Bui, B. V., Fortune, B. Ganglion cell contributions to the rat full-field electroretinogram. Journal of Physiology-London. 555 (1), 153-173 (2004).
  3. Fortune, B., et al. Selective ganglion cell functional loss in rats with experimental glaucoma. Investigative Ophthalmology & Visual Science. 45 (6), 1854-1862 (2004).
  4. Alarcon-Martinez, L., et al. Short and long term axotomy-induced ERG changes in albino and pigmented rats. Molecular Vision. 15 (254-255), 2373-2383 (2009).
  5. Lyubarsky, A. L., et al. Functionally rodless mice: transgenic models for the investigation of cone function in retinal disease and therapy. Vision Research. 42 (4), 401-415 (2002).
  6. Bush, R. A., Sieving, P. A. . A PROXIMAL RETINAL COMPONENT IN THE PRIMATE PHOTOPIC ERG A-WAVE. Investigative Ophthalmology & Visual Science. 35 (2), 635-645 (1994).
  7. Liu, K., et al. Development of the electroretinographic oscillatory potentials in normal and ROP rats. Investigative Ophthalmology & Visual Science. 47 (12), 5447-5452 (2006).
  8. Casson, R. J., Wood, J. P. M., Melena, J., Chidlow, G., Osborne, N. N. The effect of ischemic preconditioning on light-induced photoreceptor injury. Investigative Ophthalmology & Visual Science. 44 (3), 1348-1354 (2003).
  9. Lawson, E. C., et al. Aerobic Exercise Protects Retinal Function and Structure from Light-Induced Retinal Degeneration. Journal of Neuroscience. 34 (7), 2406-2412 (2014).
  10. Grimm, C., et al. HIF-1-induced erythropoietin in the hypoxic retina protects against light-induced retinal degeneration. Nature Medicine. 8 (7), 718-724 (2002).
  11. Weymouth, A. E., Vingrys, A. J. Rodent electroretinography: Methods for extraction and interpretation of rod and cone responses. Progress in Retinal and Eye Research. 27 (1), 1-44 (2008).
  12. Bayer, A. U., Cook, P., Brodie, S. E., Maag, K. P., Mittag, T. Evaluation of different recording parameters to establish a standard for flash electroretinography in rodents. Vision Research. 41 (17), 2173-2185 (2001).
  13. Pugh, E. N., Lamb, T. D. AMPLIFICATION AND KINETICS OF THE ACTIVATION STEPS IN PHOTOTRANSDUCTION. Biochimica Et Biophysica Acta. 1141 (2-3), 111-149 (1993).
  14. Breton, M. E., Schueller, A. W., Lamb, T. D., Pugh, E. N. ANALYSIS OF ERG A-WAVE AMPLIFICATION AND KINETICS IN TERMS OF THE G-PROTEIN CASCADE OF PHOTOTRANSDUCTION. Investigative Ophthalmology & Visual Science. 35 (1), 295-309 (1994).
  15. Mizota, A., Adachi-Usami, E. Effect of body temperature on electroretinogram of mice. Investigative Ophthalmology & Visual Science. 43 (12), 3754-3757 (2002).
  16. Szabo-Salfay, O., et al. The electroretinogram and visual evoked potential of freely moving rats. Brain Research Bulletin. 56 (1), 7-14 (2001).
  17. Charng, J., et al. Conscious Wireless Electroretinogram and Visual Evoked Potentials in Rats. Plos One. 8 (9), (2013).
  18. Galambos, R., Juhasz, G., Kekesi, A. K., Nyitrai, G., Szilagyi, N. NATURAL SLEEP MODIFIES THE RAT ELECTRORETINOGRAM. Proceedings of the National Academy of Sciences of the United States of America. 91 (11), 5153-5157 (1994).
  19. Galambos, R., Szabo-Salfay, O., Szatmar, E., Szilagyi, N., Juhasz, G. Sleep modifies retinal ganglion cell responses in the normal rat. Proceedings of the National Academy of Sciences of the United States of America. 98 (4), 2083-2088 (2001).
  20. Guarino, I., Loizzo, S., Lopez, L., Fadda, A., Loizzo, A. A chronic implant to record electroretinogram, visual evoked potentials and oscillatory potentials in awake, freely moving rats for pharmacological studies. Neural Plasticity. 11 (3-4), 241-250 (2004).
  21. Huang, J. C., Salt, T. E., Voaden, M. J., Marshall, J. NON-COMPETITIVE NMDA-RECEPTOR ANTAGONISTS AND ANOXIC DEGENERATION OF THE ERG B-WAVE IN-VITRO. Eye (London). 5 (4), 476-480 (1991).
  22. Sasovetz, D. . KETAMINE HYDROCHLORIDE – EFFECTIVE GENERAL ANESTHETIC FOR USE IN ELECTRORETINOGRAPHY. Annals of Ophthalmology. 10 (11), 1510-1514 (1978).
  23. Mojumder, D. K., Wensel, T. G. Topical Mydriatics Affect Light-Evoked Retinal Responses in Anesthetized Mice). Investigative Ophthalmology & Visual Science. 51 (1), 567-576 (2010).
  24. Fraunfel, F. t., Burns, R. P. ACUTE REVERSIBLE LENS OPACITY – CAUSED BY DRUGS, COLD, ANOXIA, ASPHYXIA, STRESS, DEATH AND DEHYDRATION. Experimental Eye Research. 10 (1), 19 (1970).
  25. Calderone, L., Grimes, P., Shalev, M. ACUTE REVERSIBLE CATARACT INDUCED BY XYLAZINE AND BY KETAMINE-XYLAZINE ANESTHESIA IN RATS AND MICE. Experimental Eye Research. 42 (4), 331-337 (1986).
  26. Behn, D., et al. Dark adaptation is faster in pigmented than albino rats. Documenta Ophthalmologica. 106 (2), 153-159 (2003).
  27. Sugawara, T., Sieving, P. A., Bush, R. A. Quantitative relationship of the scotopic and photopic ERG to photoreceptor cell loss in light damaged rats. Experimental Eye Research. 70 (5), 693-705 (2000).
  28. Machida, S., et al. P23H rhodopsin transgenic rat: Correlation of retinal function with histopathology. Investigative Ophthalmology & Visual Science. 41 (10), 3200-3209 (2000).
  29. Brandli, A., Stone, J. Remote Ischemia Influences the Responsiveness of the Retina. Observations in the Rat. Investigative Ophthalmology & Visual Science. 55 (4), 2088-2096 (2014).
  30. Maccarone, R., Di Marco, S., Bisti, S. Saffron supplement maintains morphology and function after exposure to damaging light in mammalian retina. Investigative Ophthalmology & Visual Science. 49 (3), 1254-1261 (2008).
  31. Hood, D. C., Birch, D. G. Assessing abnormal rod photoreceptor activity with the a-wave of the electroretinogram: Applications and methods. Documenta Ophthalmologica. 92 (4), 253-267 (1996).
  32. Robson, J. G., Frishman, L. J. The rod-driven a-wave of the dark-adapted mammalian electroretinogram. Progress in Retinal and Eye Research. 39, 1-22 (2014).
  33. Hood, D. C., Birch, D. G. A COMPUTATIONAL MODEL OF THE AMPLITUDE AND IMPLICIT TIME OF THE B-WAVE OF THE HUMAN ERG. Visual Neuroscience. 8 (2), 107-126 (1992).
  34. Wachtmeister, L. Oscillatory potentials in the retina: what do they reveal. Progress in Retinal and Eye Research. 17 (4), 485-521 (1998).
check_url/52658?article_type=t

Play Video

Cite This Article
Brandli, A., Stone, J. Using the Electroretinogram to Assess Function in the Rodent Retina and the Protective Effects of Remote Limb Ischemic Preconditioning. J. Vis. Exp. (100), e52658, doi:10.3791/52658 (2015).

View Video