Summary

同心凝胶系统来研究基质微环境的三维细胞迁移的生物物理作用

Published: April 03, 2015
doi:

Summary

机械性能和细胞外基质的组织强烈地影响细胞的三维迁移。 的体外方法来研究在生物物理变量的环境中,在人口和单个细胞水平的时空细胞迁移行为,进行说明。

Abstract

细胞迁移的能力是在各种各样的细胞功能,在整个从胚胎发育寿命和伤口愈合肿瘤和肿瘤转移的关键。尽管强烈的研究努力,细胞迁移的基本生物化学和生物物理原理仍然没有完全了解,特别是在生理相关的三维(3D)的微环境。在这里,我们描述了在体外试验设计允许的三维细胞迁移行为定量检查。该方法利用了细胞的mechanosensing能力和倾向迁移到先前未被占据的细胞外基质(ECM)。我们使用高度侵袭性​​乳腺癌细胞的侵袭,MDA-MB-231,在胶原凝胶作为模型系统。细胞群的传播和单个细胞的迁移动力学数周的文化可以用活细胞成像进行监测和分析,以提取spatiotemporally分辨数据。此外中,该方法很容易适应于不同的细胞外基质,从而提供了一种简单而功能强大的方法来研究的生物物理因素对细胞迁移的微环境中的作用。

Introduction

细胞迁移起着各种生理反应,如胚胎发育,止血,和免疫反应,以及在病理过程,如血管疾病,炎症,癌症和1的关键作用。解剖底层细胞迁移的生物化学和生物物理因素,因此从根本上重要的是不仅要了解的细胞功能的基本原则,又能促进各种生物医学应用,例如在组织工程,抗转移和抗炎药物开发。由于体内观察是技术上的挑战,有很多的努力一直专注于体外再演细胞迁移。

体外方法来研究细胞迁移已经基本上被设计为检测在二维(2D)表面上,最显着的划伤或伤口愈合测定法2。这些试验提供了简单的实验装置,方便在线 -细胞成像,并提供有益的见解底层细胞迁移的各种生化机制。但是,这些测定法不占外基质(ECM)架构和重塑,这是在理解体内迁移关键方面。最近,人们已越来越多地认识到,3D培养模型,常常在基于胶原的基质3中,提供了更好的类似于体内情况的一个平台。事实上,细胞表现出的迁徙动力学是从那些在2D表面明显,特别是由于不同的维数的环境4。此外,基体的生物物理和机械性能灵敏影响细胞迁移5,包括在肿瘤细胞侵袭6的上下文中。

在这里,我们提出研究三维细胞迁移行为的ECM与生物物理特性,可以轻松地用不同的制备条件的方法。细胞是接种在“内凝胶”和被允许逃逸到并侵入最初无细胞“外凝胶”。该方法依赖于细胞的能力来识别的存在,并倾向成,无细胞迁移区域中的外凝胶,这是密切相关的细胞mechanosensing 7。在这项研究中,我们采用的胶原蛋白网络,通过高度侵袭性​​乳腺癌细胞,MD-MBA-231入侵的ECM。机械性能和两者的内部和外部的凝胶的微结构可以被调谐89,其特征实现生理学相关的条件。重建单元轨道和分析允许在两个群体水平和个体细胞水平的时空迁移行为的详细的定量检查。重要的是,同心凝胶系统的设置模仿面临迁移细胞,尤其是侵入癌细胞,从而提供了重要的见解的体内组织的拓扑对细胞迁移和转移的物理机制。

Protocol

1.细胞收获得到的MD-MBA-231细胞从37℃,5%CO 2的培养箱中培养。分离,以0.5%胰蛋白酶-EDTA溶液从组织培养板上的细胞。使用1个毫升胰蛋白酶-EDTA溶液用于在T25培养瓶中的细胞进行培养。 沉淀细胞在15ml锥形管中,离心,在200×g下4分钟,吸出上清液,并悬浮细胞在5ml培养基。 计数细胞密度,ρ,使用血球。 注意:为了制备细胞接种内凝胶,将细胞悬液稍后?…

Representative Results

使用高度侵袭性乳腺癌细胞进行这里提出的同心凝胶测定中,MDA-MB-231,用2.4毫克/毫升的内胶原凝胶和= 2×10 6个细胞/ ml的细胞接种密度,作为一个例子。 如图2中 ,典型地经过培养几天,细胞违反内外凝胶接口,并开始侵入外凝胶。该细胞群主要传播径向向外。 外凝胶的聚合条件可被修改以研究对细胞迁移特性的矩阵的密度和机械性能的作用。 图3…

Discussion

In this protocol we describe an in vitro assay to study the 3D migrational behavior of cells in matrix environments that topologically resemble ECMs encountered in vivo. There are three main strengths of this assay as compared to other currently available methods. First, this assay allows one to simultaneously examine the cell migration mechanisms at both population level and individual cell level. This opens up possibilities of studying collective cell migration13, which has to date been lar…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者感谢W. Sun和K·詹森的批判性的讨论,并承认支持纳米生物力学实验室,在新加坡国立大学。 NAK承认支持由居里夫人IIF奖学金。

Materials

Cell culture incubator Fisher Scientific Pte Ltd Model: 371, S/No 318854-6055
Confocal microscope Nikon A1R Inverted confocal laser scanning microscope equipped with incubator chamber
Dulbecco's Modified Eagle's Medium (DMEM) Life Technologies 11965-092
Fetal Bovine Serum (FBS) Life Technologies 10082-147
Fluorescent CellTracker dye CMTMR Life Technologies C2927
Glass-bottom dish IWAKI Cell Biology 3931-035 35 mm diameter dish with 12 mm diameter glass-bottom well
Hemocytometer iN CYTO DHC-N01 (Neubauer Improved)
Microprocessor pH meter Hanna Instruments pH 211
Nutragen Collagen Advanced BioMatrix #5010-D Acid-solubilized bovine collagen type I (stock pH ~ 2)
Objective lens Nikon CFI Super Plan Fluor ELWD ADM 20XC, W.D. 8.2-6.9mm, NA 0.45.
Penicillin-Streptomycin Life Technologies 15140-122
pH meter Sartorius S/No 29153352 Basic pH Meter PB-11
Trypsin-EDTA Life Technologies 15400-054

References

  1. Horwitz, R., Webb, D. Cell migration. Curr Biol. 13 (19), R756-R759 (2003).
  2. Liang, C. C., Park, A. Y., Guan, J. L. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat. Protoc. 2 (2), 329-333 (2007).
  3. Provenzano, P. P., Eliceiri, K. W., Inman, D. R., Keely, P. J. Engineering three-dimensional collagen matrices to provide contact guidance during 3D cell migration. Curr. Prot. Cell Biol. 10, 10-17 (2010).
  4. Friedl, P., Sahai, E., Weiss, S., Yamada, K. M. New dimensions in cell migration. Nat. Rev. Mol. Cell Biol. 13 (11), 743-747 (2012).
  5. Grinnell, F., Petroll, W. M. Cell motility and mechanics in three-dimensional collagen matrices. Annu. Rev. Cell. Dev. Biol. 26, 335-361 (2010).
  6. Wirtz, D., Konstantopoulos, K., Searson, P. C. The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat. Rev. Cancer. 11 (7), 512-522 (2011).
  7. Sun, W., Kurniawan, N. A., Kumar, A. P., Rajagopalan, R., Lim, C. T. Effects of migrating cell-induced matrix reorganization on 3D cancer cell migration. Cell. Mol. Bioeng. 7 (2), 205-217 (2014).
  8. Achilli, M., Mantovani, D. Tailoring mechanical properties of collagen-based scaffolds for vascular tissue engineering: the effects of pH, temperature and ionic strength on gelation. Polymers. 2 (4), 664-680 (2010).
  9. Kurniawan, N. A., Wong, L. H., Rajagopalan, R. Early stiffening and softening of collagen: interplay of deformation mechanisms in biopolymer networks. Biomacromolecules. 13 (3), 691-698 (2012).
  10. Sun, W., Lim, C. T., Kurniawan, N. A. Mechanistic adaptability of cancer cells strongly affects anti-migratory drug efficacy. J. R. Soc. Interface. 11 (99), 20140638 (2014).
  11. Guzman, A., Ziperstein, M. J., Kaufman, L. J. The effect of fibrillar matrix architecture on tumor cell invasion of physically challenging environments. Biomaterials. 35 (25), 6954-6963 (2014).
  12. Wolf, K., et al. Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J. Cell Biol. 201 (7), 1069-1084 (2013).
  13. Friedl, P., Gilmour, D. Collective cell migration in morphogenesis, regeneration and cancer. Nat. Rev. Mol. Cell Biol. 10 (7), 445-457 (2009).
  14. Vedula, S. R. K., Ravasio, A., Lim, C. T., Ladoux, B. Collective cell migration: a mechanistic perspective. Physiology. 28 (6), 370-379 (2013).
  15. Petrie, R. J., Doyle, A. D., Yamada, K. M. Random versus directionally persistent cell migration. Nat. Rev. Mol. Cell Biol. 10 (8), 538-549 (2009).
  16. Miron-Mendoza, M., Seemann, J., Grinnell, F. The differential regulation of cell motile activity through matrix stiffness and porosity in three dimensional collagen matrices. Biomaterials. 31 (25), 6425-6435 (2010).
  17. Mouw, J. K., et al. Tissue mechanics modulate microRNA-dependent PTEN expression to regulate malignant progression. Nat. Med. 20 (4), 360-367 (2014).
  18. Wolf, K., et al. Collagen-based cell migration models in vitro and in vivo. Semin. Cell Dev. Biol. 20 (8), 931-941 (2009).
  19. Wong, L. H., Kurniawan, N. A., Too, H. -. P., Rajagopalan, R. Spatially resolved microrheology of heterogeneous biopolymer hydrogels using covalently bound microspheres. Biomech. Model. Mechanobiol. 13 (4), 839-849 (2014).
  20. Gupton, S. L., Waterman-Storer, C. M. Spatiotemporal feedback between actomyosin and focal-adhesion systems optimizes rapid cell migration. Cell. 125 (7), 1361-1374 (2006).
  21. Provenzano, P. P., Inman, D. R., Eliceiri, K. W., Trier, S. M., Keely, P. J. Contact guidance mediated three-dimensional cell migration is regulated by Rho/ROCK-dependent matrix reorganization. Biophys. J. 95 (11), 5374-5384 (2008).
  22. Wolf, K., et al. Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat. Cell Biol. 9 (8), 893-904 (2007).
  23. Jansen, K. A., Bacabac, R. G., Piechocka, I. K., Koenderink, G. H. Cells actively stiffen fibrin networks by generating contractile stress. Biophys. J. 105 (10), 2240-2251 (2013).
check_url/52735?article_type=t

Play Video

Cite This Article
Kurniawan, N. A., Chaudhuri, P. K., Lim, C. T. Concentric Gel System to Study the Biophysical Role of Matrix Microenvironment on 3D Cell Migration. J. Vis. Exp. (98), e52735, doi:10.3791/52735 (2015).

View Video