Summary

在多囊肾小型啮齿动物模型采用超高场磁共振成像<em>在体内</em>表型和药物监测

Published: June 23, 2015
doi:

Summary

The use of ultra-high field MRI as a non-invasive way to obtain phenotypic information of rodent models for polycystic kidney disease and to monitor interventions is described. Compared with the traditional histological approach, MRI images can be acquired in vivo, allowing for longitudinal follow-up.

Abstract

Several in vivo pre-clinical studies in Polycystic Kidney Disease (PKD) utilize orthologous rodent models to identify and study the genetic and molecular mechanisms responsible for the disease, and are very convenient for rapid drug screening and testing of promising therapies. A limiting factor in these studies is often the lack of efficient non-invasive methods for sequentially analyzing the anatomical and functional changes in the kidney. Magnetic resonance imaging (MRI) is the current gold standard imaging technique to follow autosomal dominant polycystic kidney disease (ADPKD) patients, providing excellent soft tissue contrast and anatomic detail and allowing Total Kidney Volume (TKV) measurements.A major advantage of MRI in rodent models of PKD is the possibility for in vivo imaging allowing for longitudinal studies that use the same animal and therefore reducing the total number of animals required. In this manuscript, we will focus on using Ultra-high field (UHF) MRI to non-invasively acquire in vivo images of rodent models for PKD. The main goal of this work is to introduce the use of MRI as a tool for in vivo phenotypical characterization and drug monitoring in rodent models for PKD.

Introduction

多囊肾(PKD),包括一组特征是肾囊肿发展单基因疾病。其中包括常染色体显性多囊肾病(ADPKD)和常染色体隐性多囊肾病(ARPKD),它代表了最常见的类型1,2。多囊肾,遗传性肾囊肿性疾病的最常见形式,起源由PKD1PKD2基因突变。它的特点是迟发性,多发性双侧肾囊肿,伴随可变外肾囊肿,以及心血管和肌肉骨骼异常。 ARPKD,最常见的影响新生儿和幼儿,是通过突变PKHD1引起,其特征在于放大回声肾脏和先天性肝纤维化3。

重要的是,多囊肾的特征在于异质性,无论是在基因(基因)和突变(等位基因)的水平,这将导致大量的phenotypic变异。在PKD1基因突变与严重临床表现(无数囊肿,早期诊断,高血压和血尿),以及快速进展到终末期肾病(20岁之前的患者PKD2突变)相关联4。严重多囊肝(PLD)和血管异常可与在两个PKD1PKD2 5突变相关联。多数ADPKD的肾脏并发症的出现主要是由于囊肿扩张连同相关的炎症和纤维化的结果。囊肿发展开始在子宫内 ,并通过患者生存期仍在继续。肾脏通常保持自己的肾形的形状,即使他们可能达到20倍以上的正常肾脏体积。大多数肾囊肿的患者当前两国的分布,但在某些特殊情况下,可以囊肿发展单边或不对称的格局。

一个主要的查林GE为以下肾病ADPKD患者或实施治疗的是疾病的自然史。在它的大部分,当然​​,肾功能保持正常和肾功能开始下降的时间,大部分的肾脏已替换囊肿。当疗法在稍后阶段实现,这是不太可能成功,因为患者可能已经达到了一个点的慢性肾脏疾病没有返回。相反,当治疗在早期阶段被启动,它是难以确定仅仅基于肾小球滤过率的响应。其结果是,肾脏体积作为疾病进展的标志物的概念受到关注。

该联合体多囊肾病(CRISP)研究的放射影像学研究表明,在ADPKD患者的增加肾和囊肿的卷直接与肾功能恶化相关,强调总肾体积(TKV),为作为潜在urrogate标志为疾病进展6,7。因此,TKV目前用作在用于ADPKD 2,8,9多个临床试验初级或次级端点。

多个小鼠模型包括自发突变和基因工程已经阐明了PKD 10,11的发病轻。 PKD1 PKD2或模型(无论是在Pkd1基因或突变PKD2)已经成为最流行 ​​的,因为他们完全模拟人类疾病。另外,啮齿动物模型中,在基因比Pkd1基因PKD2基因其它突变已被用来作为实验平台来阐明信令相关的疾病的途径。此外,几个这些模型已经用于测试潜在疗法。然而,对于PKD的限制因素,在许多啮齿类动物的研究通常是缺乏有效的非侵入性的方法,以顺序地分析在肾脏解剖和功能的变化。

磁 – [Resonance成像(MRI)是当前的金标准的成像技术来遵循ADPKD患者,提供优良的软组织对比度和解剖细节,并允许TKV测量。尽管MRI是公认的解剖成像在较大的动物和人类,成像小老鼠体内需要额外的技术挑战,其中获得高分辨率图像的能力可能会限制其实用性。在引入超高场(UHF)核磁共振(7-16.4 T)和强梯度的发展,现在有可能实现更高的信号 – 噪声比,并与一个诊断质量的空间MRI图像的分辨率相似的在人类获得。因此,采用UHF MRI对体内成像的小啮齿动物模型为PKD已经成为一个强大的工具,为研究人员。

Protocol

开始用活的动物的任何步骤之前,实验方案应该由机构动物护理和使用委员会(IACUC)的批准。 1.扫描仪配置在开始之前,确保加热器处于OFF位置。 选择迷你成像梯度和38毫米射频线圈和迷你成像架。 在保持器的中心孔安装在变温装配。 2.动物的制备对于MRI实验中,使用异氟醚蒸发达到最佳的麻醉。麻醉诱导,将动物感?…

Representative Results

在这个手稿中,我们的目标是展示UHF MRI的效用并在体内的表型特征或药物监测的啮齿动物模型为PKD和其他肾脏疾病的工具。所有的实验都是批准的IA​​CUC实验方案的一部分。 在小型啮齿动物模型使用UHF MRI PKD 体内表型: 所有成像研究是异氟烷麻醉下对活的动物进行的,用Bruker AVANCEIII-700(16.4 T)的垂直孔两种通道多核光谱仪,配备有…

Discussion

这份手稿显示了使用UHF MRI检查体内的表型特征或啮齿动物模型PKD药物监测工具的可行性。

我们描述的实验,在完成16.4 T搭配大口径的Avance III高分辨率核磁共振谱仪配微型和小型成像配件。该光谱仪主要得益于通过Paravision 5.1图像处理软件TopSpin2.0PV控制的采集和处理软件。由于啮齿类动物大小在纵向研究不同,我们使用了小型成像配件与38毫米RF线圈和小型成像支架​​…

Disclosures

The authors have nothing to disclose.

Acknowledgements

We thank Drs. Xiaofang Wang and Katharina Hopp for their invaluable help with the animal models. This work has been supported by grants from the National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (DK090728, DK058816).

Materials

AVANCEIII-700 (16.4 T) Bruker BH067206 Wide-bore two channel multinuclear spectrometer equipped with mini and micro-imaging accessories for in vivo small rodent imaging
TopSpin2.0PV  Bruker H9088TA2 Spectrometer processing software 
Paravision 5.1  Bruker T10314L5 Imaging sofware
VTU BVT 3000 digital Bruker W1101095 Temperature controller

References

  1. Torres, V. E., Harris, P. C. Autosomal dominant polycystic kidney disease: the last 3 years. Kidney Int. 76, 149-168 (2009).
  2. Chapman, A. B., et al. Kidney volume and functional outcomes in autosomal dominant polycystic kidney disease. Clinical journal of the American Society of Nephrology : CJASN. 7, 479-486 (2012).
  3. Torres, V. E., Harris, P. C. Polycystic kidney disease: genes, proteins, animal models, disease mechanisms and therapeutic opportunities. J Intern Med. 261, 17-31 (2007).
  4. Hateboer, N., et al. Comparison of phenotypes of polycystic kidney disease types 1 and 2 European PKD1-PKD2 Study Group. Lancet. 353, 103-107 (1999).
  5. Rossetti, S., et al. Association of mutation position in polycystic kidney disease 1 (PKD1) gene and development of a vascular phenotype. Lancet. 361, 2196-2201 (2003).
  6. Chapman, A. B., et al. Renal structure in early autosomal-dominant polycystic kidney disease (ADPKD): The Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease (CRISP) cohort. Kidney international. 64, 1035-1045 (2003).
  7. Grantham, J. J., et al. Volume progression in polycystic kidney disease. N Engl J Med. 354, 2122-2130 (2006).
  8. Schrier, R. W., et al. Blood Pressure in Early Autosomal Dominant Polycystic Kidney Disease. The New England journal of medicine. , (2014).
  9. Torres, V. E., et al. Angiotensin Blockade in Late Autosomal Dominant Polycystic Kidney Disease. The New England journal of medicine. , (2014).
  10. Wilson, P. D. Mouse models of polycystic kidney disease. Curr Top Dev Biol. 84, 311-350 (2008).
  11. Happe, H., Peters, D. J. Translational research in ADPKD: lessons from animal models. Nature reviews. Nephrology. , (2014).
  12. Frahm, J., Haase, A., Matthaei, D. Rapid NMR imaging of dynamic processes using the FLASH technique. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine. 3, 321-327 (1986).
  13. Bae, K. T., et al. Magnetic resonance imaging evaluation of hepatic cysts in early autosomal-dominant polycystic kidney disease: the Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease cohort. Clin J Am Soc Nephrol. 1, 64-69 (2006).
  14. Hossack, K. F., Leddy, C. L., Johnson, A. M., Schrier, R. W., Gabow, P. A. Echocardiographic findings in autosomal dominant polycystic kidney disease. N Engl J Med. 319, 907-912 (1988).
  15. Lumiaho, A., et al. Mitral valve prolapse and mitral regurgitation are common in patients with polycystic kidney disease type 1. American journal of kidney diseases : the official journal of the National Kidney Foundation. 38, 1208-1216 (2001).
  16. Vallee, J. P., Ivancevic, M. K., Nguyen, D., Morel, D. R., Jaconi, M. Current status of cardiac MRI in small animals. Magma. 17, 149-156 (2004).
  17. Epstein, F. H. MR in mouse models of cardiac disease. NMR Biomed. 20, 238-255 (2007).
  18. Bloomgarden, D. C., et al. Global cardiac function using fast breath-hold MRI: validation of new acquisition and analysis techniques. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine. 37, 683-692 (1997).
  19. Larson, A. C., et al. Self-gated cardiac cine MRI. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine. 51, 93-102 (2004).
  20. Smith, J. C., Corbin, T. J., McCabe, J. G., Bolon, B. Isoflurane with morphine is a suitable anaesthetic regimen for embryo transfer in the production of transgenic rats. Laboratory animals. 38, 38-43 (2004).
  21. Ahrens, E. T., Srinivas, M., Capuano, S., Simhan, H. N., Schatten, G. P. Magnetic resonance imaging of embryonic and fetal development in model systems. Methods Mol Med. 124, 87-101 (2006).
  22. Zhou, R., Pickup, S., Glickson, J. D., Scott, C. H., Ferrari, V. A. Assessment of global and regional myocardial function in the mouse using cine and tagged MRI. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine. 49, 760-764 (2003).
  23. Stimpfel, T. M., Gershey, E. L. Selecting anesthetic agents for human safety and animal recovery surgery. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 5, 2099-2104 (1991).

Play Video

Cite This Article
Irazabal, M. V., Mishra, P. K., Torres, V. E., Macura, S. I. Use of Ultra-high Field MRI in Small Rodent Models of Polycystic Kidney Disease for In Vivo Phenotyping and Drug Monitoring. J. Vis. Exp. (100), e52757, doi:10.3791/52757 (2015).

View Video