Summary

通过胰管结扎手术损伤的小鼠胰腺作为模型内分泌和外重新规划和扩散

Published: August 07, 2015
doi:

Summary

This protocol describes an injury model involving the surgical ligation of the pancreatic duct in the adult mouse pancreas, resulting in severe injury that establishes an environment that allows beta cell neogenesis and proliferation. This model can be used as a tool to study mechanisms involved in beta cell formation.

Abstract

扩张胰腺β细胞在体内体外 ,或产生β细胞通过分化从胚胎或成体干细胞,可以提供β细胞的新扩展的来源,以减轻在人类胰岛移植的治疗糖尿病的供体短缺。虽然最近已经取得进展实现这一目标,调节β细胞扩增和分化的干/祖细胞的机制仍有待特点。在这里,我们描述了一个协议,用于在成年小鼠胰腺可作为研究组织重构和β细胞的增殖和分化的机制的工具功能的损伤模型。局部管结扎(PDL)是啮齿动物胰腺涉及造成阻塞的外分泌产物引流出来的尾部区域胰腺的主胰管手术结扎的实验诱导的损伤。在造成损伤诱导腺泡萎缩,免疫细胞infilt口粮和严重组织重塑。我们以前曾报道神经元素(NGN)3的活化表达内源祖细胞样细胞和PDL后增加β细胞增殖。因此,PDL提供了基础,研究涉及β细胞动力学信号,并在成人胰腺内分泌祖细胞的性质。因为,它仍然在很大程度上仍然不清楚,哪些因素和途径促进β细胞新生和增殖的客运专线,标准化的协议将PDL允许跨实验室比较。

Introduction

糖尿病的患病率增加,影响超过3亿人口的世界级1,2提振了寻找新产生胰岛素的β细胞的来源,无论是在体外体内,以补充不足的β细胞质量。3识别关键机制和因素调节β细胞增殖和β细胞新生, β细胞从非β细胞或祖细胞的分化,可以用于再生治疗的糖尿病的发展提供了新的目标。

在显影啮齿动物胰腺,所有的内分泌细胞类型,从内分泌祖细胞的流动人口区分,表达转录因子Neurogenin3(Ngn3的)。4,5在成年啮齿动物胰腺,在正常生理条件下,β细胞量是保持在一个最佳的数量,以满足代谢需求。改变β细胞的大小,凋亡和复制构成为β细胞扩张和关上。6-8的主要机制虽然β细胞的潜力,在正常生理条件下增殖是整个人口均匀的,9其增殖率低和再复制是通过限制由于内分泌祖细胞迄今尚未在正常成人胰腺确定一个动态静止期间或不应期6,7,按年龄和葡萄糖代谢的影响。10,新生被认为不利于正常成人的β细胞的生长。8

因此,在成人胰腺即膨胀并能产生新的β细胞将提供一种新的,β细胞可能无限来源的兼性内分泌祖细胞的鉴定。

局部管结扎(PDL)是已经描述以诱导β细胞neogenesi动物损伤模型S在成人胰腺11,12在此模型中,主胰管引流胰尾被手术结扎。外分泌引流阻塞造成重大诱导组织重塑,伴有炎症和腺泡萎缩远端结扎12-14在这种炎症环境中,重新表达的内分泌祖标记Ngn3的是诱导β细胞的体积会增加两倍。此加倍的β细胞量的结果从新的β细胞的产生由一个Ngn3的表达胚胎型内分泌祖细胞,并从预先存在的和新形成的β细胞,它们很容易重新复制没有“静止时期”的增殖。 11,15

β细胞新生和复制在损伤模型,如胰腺6,7,16-19和β细胞20的选择性消融已被广泛地描述。但是,在采取这些再生结果E型是由造成损伤的程度的影响,与降低的初始β细胞量21相关联。 PDL是其中最初的β细胞的质量不会受到影响,β细胞新生和增殖被鲁棒地激活一个外科模型。事实上,在小鼠接受PDL的胰腺,Ngn3的表达细胞被识别为靠近管道的上皮衬里。这些细胞可以从Ngn3的-GFP转基因小鼠的结扎胰腺使用荧光激活细胞分选(FACS)分离,并能够以下植入入和离体 E12.5 Ngn3的胰腺的培养分化朝官能β细胞– / – 。小鼠11同样,在Ngn3的CreERT; R26 YFP小鼠中细胞激活基因Ngn3的他莫昔芬注射,标签阳性Ngn3的细胞衍生的β细胞被PDL后发现后都将被永久标记15。此外,新成立的β细胞预稀释-exist荷兰国际集团的β细胞,并优先在找到小胰岛在其中β细胞显示出高增殖潜力。15 Ngn3的是PDL后β细胞扩张很重要,因为使用目标特定的短发夹RNA显著减少β细胞大规模和β细胞的增殖后下降Ngn3的表达PDL 11值得注意的是,Ngn3的细胞来源的β细胞的PDL后的级分和β细胞量的关键取决于Ngn3的感应15的水平。这是根据该观察结果Ngn3的表达的高水平是用于从多能胰祖细胞胰腺发育过程中的内分泌承诺的一个关键步骤22此外,Ngn3的表达细胞由白喉毒素给药于Ngn3的CreERT选择性烧蚀; R26 IDTR小鼠结果在降低的胰岛素含量和降低的β细胞增殖,特别是在小的胰岛15

<p类=“jove_content”>虽然在PDL后管细胞Ngn3的表达诱导已经证实了许多11,15,16,23,24,在胰岛细胞24,25和差异Ngn3的表达PDL的结果挑战我们的初步意见增加β细胞量26,27,外观Ngn3的表达的管道源性内分泌祖细胞24,26,28,29,并增加β细胞的增殖27 PDL之后。30

这些相互矛盾的结果可能,至少部分地,被最重要的归因于各种因素,包括变化的小鼠,手术后的生理和环境条件,并进行分析,体重,性别和年龄的手术后的时间点的组合,差异手术技术。30在我们的手中,β细胞增殖,胰岛素含量,β细胞体积和小岛的数量PDL后持续增加。还NGN3 mRNA的持续增加,但在PDL胰腺尾部,为此我们没有直接的解释之间的Ngn3的表达差异较大。我们假设,Ngn3的 mRNA的水平可能与来自非β细胞15的β细胞新生的程度相关,但这需要进一步属实。虽然它不会删除所有的实验变化,标准化的方法进行手术PDL允许在结果更好的一致性,并在研究β细胞的增殖和新生开辟了新的途径。

Protocol

所有操作遵循保护脊椎动物用于试验和其他科学目的发行的欧洲公约的准则(ETS 123和2010/63 / EU)。 1.准备工作区提供专用的准备区,给外科手术区域和回收区。 进行整个手术过程中的层流柜,以尽量减少环境污染物。 组装用品所需的制备,手术和恢复区(如在材料和方法中列出),采用适当的无菌技术。 确保手术工具在手术前高压灭菌。 <li…

Representative Results

PDL诱导腺泡萎缩和炎症,但不影响体重和血糖 在第8周龄雄性BALB / c小鼠,所述管道排出从胰腺的尾部外分泌酶结扎而器官的头部,位于邻近所述胃和十二指肠,不受影响。年龄,性别和体重匹配的雄性BALB / c小鼠进行假手术扼要所有步骤局部结扎的手术,除了胰管的结扎。胰腺组织收获3,7,14,后30天手术。 当PDL进行正确执行,小鼠出现健?…

Discussion

In the present study, we describe in detail the methodology behind PDL, a mouse injury model to study beta cell neogenesis and proliferation and transdifferentiation of pancreatic non-beta cells. Ambiguity in data on PDL among labs stimulates the need for a standardized protocol for PDL surgery.

Critical steps in the PDL protocol include the selection of healthy, young mice for surgery. Preferably male mice should be used since unpublished data from our lab suggest that estrogen receptor signa…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors acknowledge all colleagues who made this work possible; Ann Demarré, Veerle Laurysens, Jan De Jonge and Erik Quartier for technical assistance. Financial support was from the VUB Research Council, the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT), the Beta Cell Biology Consortium (BCBC), the Fund for Scientific Research Flanders (FWO), Diabetes Onderzoek Nederland (DON) and Interuniversity Attraction Pole (IAP).

Materials

Supplies for preparation area 
Hibiscrub  Regent Medical 5601IE5F11 Chlorhexidin diglucon
Ketamin Ceva BE-V202526 anesthesia
Rompun(2%) (Xylazin) Bayer BE-V041815 anesthesia
Duratears Alcon 34335-8 ointment for eyes
Razor
Supplies for surgical area 
Leica Operating microscope Leica 10446320
Hot bead sterilizer Fine Science Tools (FST) 18000-45
autoclaved surgical instruments Fine Science Tools (FST)
Recirclulating water heating pad Gaymar Industries, Inc. TP702
Adhesive OP-towel BARRIER 706500-07
OP-tape BARRIER 381035-00
Stella 3/5 Compresse de gaze (Sterile) Lohmann&Rauscher International 35968
Mini Plasco 0,9% NaCl solution B.BRAUN 3521680
6-0 prolene suture Ethicon 8706H
4-0 polyglycol suture Ethicon SL-607
Supplies for recovery area
Paper bedding (paper towel)
Vetergesic ecuPhar BE-V342955
Materials for analysis
Taqman Ngn3 primer Integrated DNA technologies Mm.PT.56a.33574796.gs
Taqman CycloA primer Integrated DNA technologies Mm.PT.39a.2.gs
anti-Rabbit Cleaved Caspase 3 antibody (D175) Cell Signaling 5A1E
anti-mouse/rat Ki67 antibody eBioscience 14-5698-82
monoclonal anti-actin alpha-Smooth muscle-Cy3 (mouse) Sigma 085K4889
anti-rat Cytokeratin 19  DSHB
monoclonal Mouse anti-BrdU Dako M0744
Hoechst Sigma 33342

References

  1. Shaw, J. E., Sicree, R. A. Global estimates of the prevalence of diabetes for. Diabetes Res Clin Pract. 87, 4-14 (2010).
  2. Danaei, G., et al. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2·7 million participants. Lancet. 378, 31-40 (2011).
  3. Borowiak, M., Melton, D. A. How to make beta cells. Current opinion in Cell Biology. 21, 727-732 (2009).
  4. Gradwohl, G., Dierich, A., LeMeur, M., Guillemot, F. neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci U S A. 97, 1607-1611 (2000).
  5. Gu, G., Dubauskaite, J., Melton, D. A. Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development. 129, 2447-2457 (2002).
  6. Dor, Y., Brown, J., Martinez, O. I., Melton, D. A. Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature. 429, 41-46 (2004).
  7. Teta, M., Rankin, M. M., Long, S. Y., Stein, G. M., Kushner, J. A. Growth and regeneration of adult beta cells does not involve specialized progenitors. Dev Cell. 12, 817-826 (2007).
  8. Bonner-Weir, S. Perspective: Postnatal pancreatic beta cell growth. Endocrinology. 141, 1926-1929 (2000).
  9. Brennand, K., Huangfu, D., Melton, D. All beta cells contribute equally to islet growth and maintenance. PLoS Biol. 5, e163 (2007).
  10. Salpeter, S. J., Klein, A. M., Huangfu, D., Grimsby, J., Dor, Y. Glucose and aging control the quiescence period that follows pancreatic beta cell replication. Development. 137, 3205-3213 (2010).
  11. Xu, X., et al. Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell. 132, 197-207 (2008).
  12. Wang, R. N., Kloppel, G., Bouwens, L. Duct- to islet-cell differentiation and islet growth in the pancreas of duct-ligated adult rats. Diabetologia. 38, 1405-1411 (1995).
  13. Yasuda, H., et al. Cytokine expression and induction of acinar cell apoptosis after pancreatic duct ligation in mice. Journal of interferon, & cytokine research : the official journal of the International Society for Interferon and Cytokine Research. 19, 637-644 (1999).
  14. Van Gassen, N., et al. Macrophage dynamics are regulated by local macrophage proliferation and monocyte recruitment in injured pancreas. European journal of immunology. , (2015).
  15. Van de Casteele, M., et al. Neurogenin 3+ cells contribute to beta-cell neogenesis and proliferation in injured adult mouse pancreas. Cell Death Dis. 4, e523 (2013).
  16. Xiao, X., et al. No evidence for beta cell neogenesis in murine adult pancreas. The Journal of clinical investigation. 123, 2207-2217 (2013).
  17. Ackermann Misfeldt, A., Costa, R. H., Gannon, M. Beta-cell proliferation, but not neogenesis, following 60% partial pancreatectomy is impaired in the absence of FoxM1. Diabetes. 57, 3069-3077 (2008).
  18. Lee, C. S., De Leon, D. D., Kaestner, K. H., Stoffers, D. A. Regeneration of pancreatic islets after partial pancreatectomy in mice does not involve the reactivation of neurogenin-3. Diabetes. 55, 269-272 (2006).
  19. Bonner-Weir, S., Sharma, A. Pancreatic stem cells. The Journal of pathology. 197, 519-526 (2002).
  20. Nir, T., Melton, D. A., Dor, Y. Recovery from diabetes in mice by beta cell regeneration. The Journal of clinical investigation. 117, 2553-2561 (2007).
  21. Bouwens, L., Rooman, I. Regulation of pancreatic beta-cell mass. Physiol Rev. 85, 1255-1270 (2005).
  22. Wang, S., et al. Neurog3 gene dosage regulates allocation of endocrine and exocrine cell fates in the developing mouse pancreas. Developmental biology. 339, 26-37 (2010).
  23. Pan, F. C., et al. Spatiotemporal patterns of multipotentiality in Ptf1a-expressing cells during pancreas organogenesis and injury-induced facultative restoration. Development. 140, 751-764 (2013).
  24. Kopp, J. L., et al. Sox9+ ductal cells are multipotent progenitors throughout development but do not produce new endocrine cells in the normal or injured adult pancreas. Development. 138, 653-665 (2011).
  25. Wang, S., et al. Sustained Neurog3 expression in hormone-expressing islet cells is required for endocrine maturation and function. Proc Natl Acad Sci U S A. 106, 9715-9720 (2009).
  26. Kopinke, D., et al. Lineage tracing reveals the dynamic contribution of Hes1+ cells to the developing and adult pancreas. Development. 138, 431-441 (2011).
  27. Rankin, M. M., et al. beta-Cells are not generated in pancreatic duct ligation-induced injury in adult mice. Diabetes. 62, 1634-1645 (2013).
  28. Solar, M., et al. Pancreatic exocrine duct cells give rise to insulin-producing beta cells during embryogenesis but not after birth. Dev Cell. 17, 849-860 (2009).
  29. Furuyama, K., et al. Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, exocrine pancreas and intestine. Nat Genet. 43, 34-41 (2011).
  30. Van de Casteele, M., et al. Partial duct ligation: beta-cell proliferation and beyond. Diabetes. 63, 2567-2577 (2014).
  31. Zhang, J., Rouse, R. L. Histopathology and pathogenesis of caerulein-, duct ligation-, and arginine-induced acute pancreatitis in Sprague-Dawley rats and C57BL6 mice. Histology and histopathology. 29, 1135-1152 (2014).
  32. Martinez-Romero, C., et al. The epigenetic regulators Bmi1 and Ring1B are differentially regulated in pancreatitis and pancreatic ductal adenocarcinoma. The Journal of pathology. 219, 205-213 (2009).
  33. Prevot, P. P., et al. Role of the ductal transcription factors HNF6 and Sox9 in pancreatic acinar-to-ductal metaplasia. Gut. 61, 1723-1732 (2012).
check_url/52765?article_type=t

Play Video

Cite This Article
De Groef, S., Leuckx, G., Van Gassen, N., Staels, W., Cai, Y., Yuchi, Y., Coppens, V., De Leu, N., Heremans, Y., Baeyens, L., Van de Casteele, M., Heimberg, H. Surgical Injury to the Mouse Pancreas through Ligation of the Pancreatic Duct as a Model for Endocrine and Exocrine Reprogramming and Proliferation. J. Vis. Exp. (102), e52765, doi:10.3791/52765 (2015).

View Video