Summary

생물 액체 배지에서 확장 성, 금속 높은 가로 세로 비율 나노 복합 재료의 생성

Published: July 08, 2015
doi:

Summary

여기서 우리는 생물학적 조건하에 액체 배지에서 신규 한 고 종횡비 biocomposites를 합성 프로토콜을 제시한다. biocomposites 각각의 직경 및 길이에서 마이크로 나노 미터 스케일. 시스틴 결합 구리 나노 입자 (CNPS) 및 황산구리는 합성 용 핵심 부품이다.

Abstract

이 프로토콜의 목적은 높은 종횡비 구조를 갖는 두 개의 신규 biocomposites의 합성을 설명하는 것이다. biocomposites 구리 나노 입자 (CNPS) 또는 금속 성분을 기여 황산구리 중 하나와, 구리 및 시스틴 이루어져있다. 합성 생물학적 조건 (37 ° C)와 24 시간 후의 자기 조립 복합 형태 하에서 액상에서 수행된다. 형성되면, 이러한 복합 재료는 모두 액체 매체와 건조 폼에서 매우 안정적이다. 복합 길이 범위를 마이크로 -하는 나노에서 확장, 몇 미크론에서 직경 25 nm의. 에너지 분산 형 X 선 분광법 (EDX)을 전계 방출 주사 전자 현미경은 따라서 최종 나노 복합 재료에서의 황 원으로서 시스테인을 확인, 출발 CNP 재료 결석 동안 황, NP 유래의 선형 구조 내에 존재하는 것을 입증 . 이러한 선형 나노 및 마이크로 복합 재료의 합성, STR의 길이의 다양한 중uctures는 합성 용기 내에서 형성된다. 합성 후 액상 혼합물의 초음파 처리는 초음파 처리 시간 증가로 평균 길이를 감소하여 구조물의 평균 크기를 제어하는​​데 도움이 입증되었다. 형성된 구조는 고도로 응집하지 않는 안정한 액상이 형성되어 있기 때문에, 원심 분리는 또한 집중 형성된 복합체 편석을 돕기 위해 사용될 수있다.

Introduction

Copper is a highly reactive metal that in the biological world is essential in some enzyme functions 1,2, but in higher concentrations is potently toxic including in the nanoparticulate form 3,4. Concern over copper toxicity has become more relevant as CNPs and other copper-based nanomaterials are utilized, due to the increased surface area/mass for nanostructures. Thus, even a small mass of copper, in nanoparticle form, could cause local toxicity due to its ability to penetrate the cell and be broken down into reactive forms. Some biological species can complex with and chelate metal ions, and even incorporate them into biological structures as has been described in marine mussels 5. In studying the potential toxic effects of nanomaterials 4, it was discovered that over time, and under biological conditions used for typical cell culturing (37 °C and 5% CO2), stable copper biocomposites could be formed with a high-aspect ratio (linear) structure.

By a process of elimination, the initial discovery of these linear biocomposites, which occurred in complete cell culture media, was simplified to a defined protocol of essential elements needed for the biocomposites to self-assemble. Self-assembly of two types of highly linear biocomposites was discovered to be possible with two starting metal components: 1) CNPs and 2) copper sulfate, with the common biological component being cystine. Although more complex, so called “urchin” and “nanoflower” type copper-containing structures with nanoscale and microscale features have been previously reported, these were produced under non-biological conditions, such as temperatures of 100 °C or greater 6-8. To our knowledge, synthesis of individual, linear copper-containing nanostructures that are scalable in liquid phase under biological conditions has not been previously described.

One of the starting materials utilized for synthesis of nanocomposites, namely CNPs, has been reported previously to be very toxic to cells 4. It has recently been reported that after the nanocomposites are formed, these structures are less toxic on a per mass basis than the starting NPs 9. Thus, the synthesis described here may be derived from a biological and biochemical reaction that has utility in stabilizing reactive copper species, both in the sense of transforming the NP form into larger structures and in producing composites less toxic to cells.

In contrast to many other nanomaterial forms which are known to aggregate or clump upon interaction with biological liquid media 10,11, once formed, the highly linear composites described here avoid aggregation, possibly due to a redistribution of charge which has been previously reported 9. As detailed in the current work, this avoidance of aggregation is convenient for the purposes of working with the structures once formed for at least 3 reasons: 1) composite structures once formed may be concentrated using centrifugation and then easily dispersed again using vortex mixing; 2) formed structures can be decreased in average size by sonication for different periods of time; and 3) the formed linear structures may provide an additional tool for avoiding the recently described “coffee ring effect” 12 and thus provide a dopant for creating more evenly distributed coatings of materials, especially those containing spherical particulates.

Protocol

실험 1. 계획 합성에 필요한 구리 나노 복합 재료의 양을 결정합니다. 그 기준으로, 작은 볼륨 플라스크 (25cm 2), 또는 자료의 준비에 아래에 표시된 바와 같이 더 큰 플라스크의 번호를 선택합니다. 이 합성에 대해, 5 % CO 2와 적어도 40 %의 습도와 37 ° C의 배양기를 사용한다. 이러한 보육이 가능하며 반복적으로 합성의 시간 (약 24 시간) 이상 방해되지 않습니다 있는?…

Representative Results

도 1은 본 연구에서 설명한 선형 biocomposites을 형성하는 합성 단계의 흐름도의 개략을 나타낸다. 출발 원료로 CNPS 또는 황산구리는 2 ㎎ / ㎖ 용액을 형성하기 위해 멸균 수와 함께,이 용액을 혼합하고 균일 혼합을 제공하는 초음파 처리하고,이 구리 용액을 합성에 대해 다음과 같은 비율로 혼합되어있다 : 949 부 멸균 물 : 50 부 구리 혼합물 : 1 부 시스틴 원액. 실제 볼륨은 확장 또는 최?…

Discussion

CNPS 포함 된 나노 물질의 잠재적 인 독성을 평가하는 동안, 이것은 장기적, CNPS는 큰 응집 형태로 초기에 더 분산 미립자 분포 (도 2)로 형질 전환시키고 있음을 관찰 하였다. 일부의 경우, 생물학적 조건 하에서 세포 배양 접시에서 생산 된 이러한 고도로 응집 된 구조물은 "게"를 포함하는 전술 구리 연상시키는 중앙 집합체에서 높은 선형 돌기를 형성 6. 그것은 여기에 …

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors would like to acknowledge the technical assistance of Alfred Gunasekaran in electron microscopy studies at the Institute of Micromanufacturing at Louisiana Tech University, and Dr. Jim McNamara for assistance with additional microscopy studies. The work described was supported in part by Louisiana board of Regents PKSFI Contract No. LEQSF (2007-12)-ENH-PKSFI-PRS-04 and the James E. Wyche III Endowed Professorship from Louisiana Tech University (to M.D.).

Materials

Mini Vortexer VWR (https://us.vwr.com) 58816-121
CO2 Incubator Model # 2425-2 VWR (https://us.vwr.com) Contact vendor Current model calalog # 98000-360
Eppendorf Centrifuge (Refrigerated Microcentrifuge) Labnet (http://labnetinternational.com/) C2500-R Model Prism R
Cell Culture Centrifuge Model Z323K Labnet (http://labnetinternational.com/) Contact vendor Current model Z206A catalog # C0206-A
Sonicator (Ultrasonic Cleaner) Branson Ultrasonics Corporation (http://www.bransonic.com/) 1510R-MTH
Balance Sartorius (http://dataweigh.com) Model CP225D similar model CPA225D
Olympus IX51 Inverted Light Microscope Olympus (http://olympusamerica.com Contact vendor
Olympus DP71 microscope digital camera Olympus (http://olympusamerica.com Contact vendor
external power supply unit- white light for Olympus microscope Olympus (http://olympusamerica.com TH4-100
10x, 20, and 40x microscope objectives Olympus (http://olympusamerica.com Contact vendor
Scanning Electron Microscope Hitachi (http://hitachi-hitec.com/global/em/sem/sem_index.html) model S-4800
Transmission Electron Microscope Zeiss (http://zeiss.com/microscopy/en_de/products.html) model Libra 120
Table Top Work Station Unidirectional Flow Clean Bench Envirco (http://envirco-hvac.com) model PNG62675 Used for sterile cell culture technique

References

  1. Klinman, J. P. The copper-enzyme family of dopamine beta-monooxygenase and peptidylglycine alpha-hydroxylating monooxygenase: resolving the chemical pathway for substrate hydroxylation. The Journal of biological chemistry. 281, 3013-3016 (2006).
  2. Uauy, R., Olivares, M., Gonzalez, M. Essentiality of copper in humans. The American journal of clinical nutrition. 67, 952S-959S (1998).
  3. Karlsson, H. L., Cronholm, P., Gustafsson, J., Copper Moller, L. oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chemical research in toxicology. 21, 1726-1732 (2008).
  4. Parekh, G., et al. Layer-by-layer nanoencapsulation of camptothecin with improved activity. International journal of pharmaceutics. 465, 218-227 (2014).
  5. Harrington, M. J., Masic, A., Holten-Andersen, N., Waite, J. H., Fratzl, P. Iron-clad fibers: a metal-based biological strategy for hard flexible coatings. Science. 328, 216-220 (2010).
  6. Keyson, D., et al. CuO urchin-nanostructures synthesized from a domestic hydrothermal microwave method. Materials Research Bulletin. 43, 771-775 (2008).
  7. Liu, B., Zeng, H. C. Mesoscale organization of CuO nanoribbons: formation of ‘dandelions’. J Am Chem Soc. 126, 8124-8125 (2004).
  8. Peng, M., et al. Controllable synthesis of self-assembled Cu2S nanostructures through a template-free polyol process for the degradation of organic pollutant under visible light. Materials Research Bulletin. 44, 1834-1841 (2009).
  9. Deodhar, S., Huckaby, J., Delahoussaye, M., DeCoster, M. A. High-Aspect Ratio Bio-Metallic Nanocomposites for Cellular Interactions. IOP Conference Series: Materials Science and Engineering. 64, 012014 (2014).
  10. Montes-Burgos, I., et al. Characterisation of nanoparticle size and state prior to nanotoxicological studies. Journal of Nanoparticle Research. 12, 47-53 (2010).
  11. Wiogo, H. T., Lim, M., Bulmus, V., Yun, J., Amal, R. Stabilization of magnetic iron oxide nanoparticles in biological media by fetal bovine serum (FBS). Langmuir. 27, 843-850 (2011).
  12. Yunker, P. J., Still, T., Lohr, M. A., Yodh, A. G. Suppression of the coffee-ring effect by shape-dependent capillary interactions. Nature. 476, 308-311 (2011).
  13. Kahler, H., Lloyd Jr, B., Eden, M. Electron Microscopic and Other Studies on a Copper–Cystine Complex. The Journal of Physical Chemistry. 56, 768-770 (1952).
  14. Furia, E., Sindona, G. Complexation of L-cystine with metal cations. Journal of Chemical & Engineering Data. 55, 2985-2989 (2010).
  15. Hawkins, C., Perrin, D. Polynuclear Complex Formation. II. Copper (II) with Cystine and Related Ligands. Inorganic Chemistry. 2, 843-849 (1963).
  16. Hallman, P., Perrin, D., Watt, A. E. The computed distribution of copper (II) and zinc (II) ions among seventeen amino acids present in human blood plasma. Biochem. J. 121, 549-555 (1971).
  17. Jensen, L. S., Maurice, D. V. Influence of sulfur amino acids on copper toxicity in chicks. The Journal of nutrition. 109, 91-97 (1979).
  18. Lee, Y., Choi, J. R., Lee, K. J., Stott, N. E., Kim, D. Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics. Nanotechnology. 19, 415604 (2008).
  19. Hume, J., et al. Engineered coiled-coil protein microfibers. Biomacromolecules. 15, 3503-3510 (2014).
check_url/52901?article_type=t

Play Video

Cite This Article
Cotton Kelly, K., Wasserman, J. R., Deodhar, S., Huckaby, J., DeCoster, M. A. Generation of Scalable, Metallic High-Aspect Ratio Nanocomposites in a Biological Liquid Medium. J. Vis. Exp. (101), e52901, doi:10.3791/52901 (2015).

View Video