Summary

En<em> In Vitro</em> Modell for måling av immunresponser mot Malaria i sammenheng med HIV Samtidig infeksjon

Published: October 06, 2015
doi:

Summary

Human co-infection is difficult to replicate in vitro. However, human malaria parasites can readily be cultured in vitro, as can freshly isolated human peripheral blood mononuclear cells naturally infected with HIV. This provides an excellent model for studying early immune responses to malaria parasites in the context of HIV co-infection.

Abstract

Malaria and HIV co-infection is a growing health priority. However, most research on malaria or HIV currently focuses on each infection individually. Although understanding the disease dynamics for each of these pathogens independently is vital, it is also important that the interactions between these pathogens are investigated and understood.

We have developed a versatile in vitro model of HIV-malaria co-infection to study host immune responses to malaria in the context of HIV infection. Our model allows the study of secreted factors in cellular supernatants, cell surface and intracellular protein markers, as well as RNA expression levels. The experimental design and methods used limit variability and promote data reliability and reproducibility.

All pathogens used in this model are natural human pathogens (Plasmodium falciparum and HIV-1), and all infected cells are naturally infected and used fresh. We use human erythrocytes parasitized with P. falciparum and maintained in continuous in vitro culture. We obtain freshly isolated peripheral blood mononuclear cells from chronically HIV-infected volunteers. Every condition used has an appropriate control (P. falciparum parasitized vs. normal erythrocytes), and every HIV-infected donor has an HIV uninfected control, from which cells are harvested on the same day. This model provides a realistic environment to study the interactions between malaria parasites and human immune cells in the context of HIV infection.

Introduction

Co-infeksjon, infeksjon med flere samtidige infeksjoner, er normen i naturlige omgivelser. Co-infeksjon kan ha en stor innvirkning på sykdommen patologi og på den kliniske behandlingen av hver infeksjon. I sammenheng med ko-infeksjon, vaksine og legemiddel effekt, så vel som diagnostiske tester kan bli negativt påvirket (oversikt i 1). Imidlertid, til tross for sin betydning, de fleste av patogenet forskning vurderer bare én infeksjoner.

Malaria og HIV-1 (HIV) er ledende årsaker til sykelighet og dødelighet globalt. Områder av malaria og HIV endemicity dele en bred geografisk overlapp, sette millioner av mennesker i fare for co-infeksjon og dermed i fare for alvorligere klinisk sykdom 2-10. De to sykdommene negativt samhandle. Hos HIV-infiserte individer, høyere HIV-virusmengde og midlertidige reduksjoner i CD4 + T-celletall kan sees under en malariainfeksjon, mensmalariaparasitten byrder og risiko for klinisk og alvorlig malaria er høyere i co-infiserte individer 2,3,5,7,8,10. Mekanismer som HIV øker malaria alvorlighetsgrad er ikke fullt ut forstått og garanterer videre etterforskning.

Her beskriver vi en metode som malaria og HIV-infeksjon kan studeres in vitro. Konkret gir denne metoden for undersøkelse av malaria-spesifikke immunresponser i sammenheng med HIV-infeksjon. Vår protokollen beskriver en allsidig ko-kultur-system ved bruk av nylig isolerte perifere mononukleære blodceller (PBMC) isolert fra kronisk HIV-infiserte givere og in vitro dyrkede P. falciparum parasitized erytrocytter (PfRBC). Virkningen av HIV antiretroviral terapi på disse svarene kan også bli undersøkt ved hjelp prospektivt innsamlede PBMC fra HIV (+) givere før og etter behandling.

Vi har brukt dette systemet for å undersøke effekten av HIV-smittepå malaria-spesifikke medfødte immunresponser 11,12, og var i stand til å bestemme at malariaspesifikke IFNy og TNF responser er svekket i NK-celler, NKT celler, γδ T-celler fra HIV (+) givere før og etter HIV antiretroviral behandling . I tillegg var vi i stand til å bruke dette systemet for å fastslå at monocyttiske funksjoner er også svekket i HIV (+) givere, men gjenopprette post-HIV antiretroviral behandling.

Protocol

Denne protokollen krever rekruttering av givere for serum og RBC som skal brukes for parasitt kultur, og HIV (+) og friske givere for PBMC isolasjon. Institutional Review Boards må godkjenne alle studiene og alle givere må gi informert samtykke før blodprøvetaking. FORSIKTIG: Arbeide med humane blodprøver og humane malariaparasitter krever forholdsregler. Alltid bære en frakk, hansker, og arbeid i en nivå 2 biosikkerhet kabinett. I tilfelle av utilsiktet perkutan eksponering for menne…

Representative Results

Grafene viser nivåer av IFNy-produksjon fra NKT-celler (figur 2), ved hjelp av CD56 + CD3 + γδ- porter for å oppnå den NKT-celler populasjon (data ikke vist). Cellene ble dyrket i 72 timer før farging. Når farget, 100.000 CD3 + celler ble kjøpt på flowcytometeret for å få store nok populasjoner av NK, NKT og γδ celler (celler av interesse). Et minimum på 5600 NKT-celler er vist på hver graf. TNF-produksjon er oppnådd på samme måte (data ikke vist). Grafene viser tydelig at IFNy produks…

Discussion

Vår protokoll har blitt optimalisert for å mest mulig realistisk studere HIV-malaria-infeksjon in vitro. Først blir friske humane RBC-er og serum som kreves for malariaparasitten kultur. Dette er viktig for å oppnå en sunn befolkning på malariaparasitter. Parasitt lysatene kan ikke erstattes av levende parasitter som cytokinproduksjon er mye raskere og mer intens når du bruker levende P. falciparum smittet RBC (PfRBC) 17,18. I tillegg, aktivering av celletyper som NK-celler, krever he…

Disclosures

The authors have nothing to disclose.

Acknowledgements

C.A.M.F. and L.S. participated in protocol design, acquisition and analysis of data, and drafting of the article.

The authors wish to thank Dr. Kain, Dr. Loutfy, Dr. Wasmuth, and Dr. Ayi for their contributions.

C.F. was supported by a CTN/Ontario HIV Treatment Network (OHTN) postdoctoral fellowship. L.S. is supported by an OHTN Junior Investigator Development Award. The present work was supported by a Canadian Institutes of Health Research (CIHR) operating grant (MOP-13721 and 115160), and a CIHR New Investigator Catalyst grant.

Materials

alanine Sigma A7377
antibodies (see other table)
BD Cytofix/Cytoperm with BD GolgiPlug BD 555028 includes brefeldin A, cytofix/cytoperm buffer and perm/wash buffer
BD Vacutainer ACD Solution A BD 364506
BD Vacutainer Sodium Heparin BD 17-1440-02
DPBS (no calcium, no magnesium) Corning 21-031-CV
Fetal Bovine Serum Sigma F1051 heat inactivate before use
Ficoll-Paque PLUS GE Healthcare 17-1440-02
gentamycin (10mg/ml) Gibco 15710-064
Hema3 Staining Set Fisher 122-911
HEPES Fisher BP310-500
hypoxanthine Sigma H9636
Ionomycin Sigma I3909
MEM non-essential amino acids (10mM) Gibco 11140
PMA Sigma P8139
RPMI-1640 powder Life-Technologies 31800-022
RPMI-1640 with L-glutamine and HEPES Thermo Scientific SH30255.01
sodium bicarbonate (powder, cell culture) Sigma S5761
Sodium Pyruvate (100mM) Gibco 11360
Tris (Trizma base) Sigma T6066
Trizol Ambion 15596018
Trypan Blue (0.4%) Gibco 15250-061
BD CompBead BD 552843, 552845 depends on antibodies used
Parasite Gas Mixture By special order 3% CO2, 1% O2, balance N2

References

  1. Graham, A. L., Cattadori, I. M., Lloyd-Smith, J. O., Ferrari, M. J., Bjørnstad, O. N. Transmission consequences of coinfection: cytokines writ large. Trends in parasitology. 23 (6), 284-291 (2007).
  2. French, N., et al. Increasing rates of malarial fever with deteriorating immune status in HIV-1-infected Ugandan adults. AIDS (London, England). 15 (7), 899-906 (2001).
  3. Hoffman, I. F., et al. The effect of Plasmodium falciparum malaria on HIV-1 RNA blood plasma concentration. AIDS (London, England). 13 (4), 487-494 (1999).
  4. Kamya, M. R., et al. Effect of HIV-1 infection on antimalarial treatment outcomes in Uganda: a population-based study. The Journal of infectious diseases. 193 (1), 9-15 (2006).
  5. Kublin, J. G., et al. Effect of Plasmodium falciparum malaria on concentration of HIV-1-RNA in the blood of adults in rural Malawi: a prospective cohort study. Lancet. 365 (9455), 233-240 (2005).
  6. Mermin, J., et al. Effect of co-trimoxazole prophylaxis, antiretroviral therapy, and insecticide-treated bednets on the frequency of malaria in HIV-1-infected adults in Uganda: a prospective cohort study. Lancet. 367 (9518), 1256-1261 (2006).
  7. Patnaik, P., et al. Effects of HIV-1 serostatus, HIV-1 RNA concentration, and CD4 cell count on the incidence of malaria infection in a cohort of adults in rural Malawi. The Journal of infectious diseases. 192 (6), 984-991 (2005).
  8. Whitworth, J., et al. Effect of HIV-1 and increasing immunosuppression on malaria parasitaemia and clinical episodes in adults in rural Uganda: a cohort study. Lancet. 356 (9235), 1051-1056 (2000).
  9. Xiao, L., Owen, S. M., Rudolph, D. L., Lal, R. B., Lal, A. A. Plasmodium falciparum antigen-induced human immunodeficiency virus type 1 replication is mediated through induction of tumor necrosis factor-alpha. The Journal of infectious diseases. 177 (2), 437-445 (1998).
  10. Francesconi, P., et al. HIV, malaria parasites, and acute febrile episodes in Ugandan adults: a case-control study. AIDS (London, England). 15 (18), 2445-2450 (2001).
  11. Finney, C. A. M., et al. HIV infection deregulates Tim-3 expression on innate cells: combination antiretroviral therapy results in partial restoration. Journal of acquired immune deficiency syndromes. 63 (2), 161-167 (2013).
  12. Finney, C. A. M., et al. HIV infection deregulates innate immunity to malaria despite combination antiretroviral therapy. AIDS (London, England). 27 (3), 325-335 (2013).
  13. Ljungstrom, I., et al. . Methods in Malaria Research. , (2013).
  14. Heid, C. A., Stevens, J., Livak, K. J., Williams, P. M. Real time quantitative PCR. Genome Res. 6 (10), 986-994 (1996).
  15. Livak, K. J., Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-DDCT method. Methods. 25 (4), 402-408 (2001).
  16. Hensmann, M., Kwiatkowski, D. Cellular basis of early cytokine response to Plasmodium falciparum. Infection and immunity. 69 (4), 2364-2371 (2001).
  17. Artavanis-Tsakonas, K., Riley, E. M. Innate immune response to malaria: rapid induction of IFN-gamma from human NK cells by live Plasmodium falciparum-infected erythrocytes. J Immunol. 169 (6), 2956-2963 (2002).
  18. Lambros, C., Vanderberg, J. P. Synchronization of Plasmodium falciparum erythrocytic stages in culture. The Journal of parasitology. 65 (3), 418-420 (1979).
  19. Ludlow, L. E., et al. HIV-1 inhibits phagocytosis and inflammatory cytokine responses of human monocyte-derived macrophages to P. falciparum infected erythrocytes. PloS one. 7 (2), e32102 (2012).
  20. Weinberg, A., et al. Viability and functional activity of cryopreserved mononuclear cells. Clinical and diagnostic laboratory immunology. 7 (4), 714-716 (2000).
  21. Fowke, K. R., Behnke, J., Hanson, C., Shea, K., Cosentino, L. M. Apoptosis: a method for evaluating the cryopreservation of whole blood and peripheral blood mononuclear cells. Journal of immunological. 244 (1-2), 139-144 (2000).
  22. Jeurink, P. V., Vissers, Y. M., Rappard, B., Savelkoul, H. F. J. T cell responses in fresh and cryopreserved peripheral blood mononuclear cells: kinetics of cell viability, cellular subsets, proliferation, and cytokine production. Cryobiology. 57 (2), 91-103 (2008).
  23. Kvarnström, M., Jenmalm, M. C., Ekerfelt, C. Effect of cryopreservation on expression of Th1 and Th2 cytokines in blood mononuclear cells from patients with different cytokine profiles, analysed with three common assays: an overall decrease of interleukin-4. Cryobiology. 49 (2), 157-168 (2004).
  24. Venkataraman, M. Effects of cryopreservation of immune responses. XI. Heightened secretion of tumor necrosis factor-alpha by frozen human peripheral blood mononuclear cells. Cryobiology. 34 (3), 276-283 (1997).
  25. Venkataraman, M. Effects of cryopreservation on immune responses. X. Decrease in interleukin-12 production by frozen human peripheral blood mononuclear cells is mediated by the endogenously hypersecreted interleukin-10. Cryobiology. 33 (5), 581-588 (1996).
  26. Reimann, K. A., Chernoff, M., Wilkening, C. L., Nickerson, C. E., Landay, A. L. Preservation of lymphocyte immunophenotype and proliferative responses in cryopreserved peripheral blood mononuclear cells from human immunodeficiency virus type 1-infected donors: implications for multicenter clinical trials. The ACTG Immunology Advanced. Clinical and diagnostic laboratory immunology. 7 (3), 352-359 (2000).
  27. Bennett, S., Breit, S. N. Variables in the isolation and culture of human monocytes that are of particular relevance to studies of HIV. Journal of leukocyte biology. 56 (3), 236-240 (1994).
check_url/52969?article_type=t&slug=an-vitro-model-for-measuring-immune-responses-to-malaria-context-hiv

Play Video

Cite This Article
Finney, C., Serghides, L. An In Vitro Model for Measuring Immune Responses to Malaria in the Context of HIV Co-infection. J. Vis. Exp. (104), e52969, doi:10.3791/52969 (2015).

View Video