Summary

采用双选择播放测试确定超声波发声首小鼠

Published: September 03, 2015
doi:

Summary

Ultrasonic vocalizations (USVs) in mice differ depending on age, sex, condition, and genetic background. Using two ultrasound emitters broadcasting simultaneously in different locations, this two-choice test can evaluate murine recognition and preference responses to different characteristics of USVs.

Abstract

Mice emit ultrasonic vocalizations (USVs) during a variety of conditions, such as pup isolation and adult social interactions. These USVs differ with age, sex, condition, and genetic background of the emitting animal. Although many studies have characterized these differences, whether receiver mice can discriminate among objectively different USVs and show preferences for particular sound traits remains to be elucidated. To determine whether mice can discriminate between different characteristics of USVs, a playback experiment was developed recently, in which preference responses of mice to two different USVs could be evaluated in the form of a place preference.

First, USVs from mice were recorded. Then, the recorded USVs were edited, trimmed accordingly, and exported as stereophonic sound files. Next, the USV amplitudes generated by the two ultrasound emitters used in the experiment were adjusted to the same sound pressure level. Nanocrystalline silicon thermo-acoustic emitters were used to play the USVs back. Finally, to investigate the preference of subject mice to selected USVs, pairs of two differing USV signals were played back simultaneously in a two-choice test box. By repeatedly entering a defined zone near an ultrasound emitter and searching the wire mesh in front of the emitter, the mouse reveals its preference for one sound over another. This model allows comparing the attractiveness of the various features of mouse USVs, in various contexts.

Introduction

许多动物使用的发声种内通信。在小鼠小家鼠,通信信号中的一个重要类型是超声波发声(USVs),其具有的频率高于20kHz。被老鼠发出的USVs被认为是社会认可的男女1-4,女女1,5,和男男性1,6交互的组成部分。 USVs由幼崽也发出时,他们都从他们的母亲,这增加了她的小狗,检索行为中分离,因此小狗存活7。虽然许多报告分析和归类鼠标USVs 8,图9中,行为反应,并接收动物的神经机制已少记载10,11,后者是必要明确USVs的各种特性的生物学意义。揭示这些机制,播放实验是一种有效的方法。最近播放的研究表明,雌小鼠被吸引到USVs 12,并且它们倾向于从男性对不同于他们的父母13,14 USVs。

本文介绍了用于评估USV偏好小鼠播放测试。两选择测试盒被开发,其中两个不同USVs可以同时在测试外壳的两个室播放,如图1中所示。这种类型的测试盒防止声音污染除以测试区在三个子室,使用铅墙。超声波发射器位于每间客房外。在房间和超声波发射器之间的墙上都布满了铁丝网孔。老鼠可以在三个房间自由移动,并显示“搜索网”的行为,仿佛由超声波发射器播放USVs回应。在该试验中,将小鼠住不同的持续时间接近一个声音发射器或其他的周期。这些参数可以被记录,以获得一个敏感measu再完善的偏爱。

要播放USVs背面,纳米晶硅热声发射器即,“纳米硅发射极”)用作在以前的研究15-17。这些装置是由一个薄膜加热器电极,纳米多孔硅层,和一个单晶硅晶片。数字声音文件被转换成模拟信号,然后通过加热器电极。该装置所产生的电压依赖性的热信号转换成具有低失真显著声压。这个装置是独特的,不同于依赖于机械振动共同发声器,它可以再现声音无隔膜的需要。发射器表现出在频率从20到160千赫图2)的平坦的声压水平,并且可以在时间,频率和声压级15,18,19而言重现数字记录的鼠USVs非常精确。

ve_content“> 图3所示的代表性实验,C57BL / 6(B6)的女性被允许的BALB / c(BALB)之间进行选择雄性USVs和背景噪声。此外图4显示之间B6和BALB雌性的选择从BALB和B6的男性同时USV回放,据报道在先前的研究14。雄性USVs的特性B6之间不同和BALB菌株20。因此,如这些结果,USVs的吸引力可与本协议进行评估,在这种声音是从个人生活记录,声学分析,并播放给其他人。

Protocol

所有程序都经麻布大学的伦理委员会。所有实验进行了在一个隔音室中。 1.动物的制备男性录制获得经验交配性成熟雄性小鼠。 女性受试者获取处女雌性小鼠已安置与每笼2-5同窝(一般为8 – 12周龄)。 获取阴道涂片每天以确定试验前的发情周期的阶段,根据麦克莱恩21。应注意,以尽量减少阴道的刺激,以避免假孕。 </…

Representative Results

所述USVs从一个BALB-雄(每20秒161音节),以及背景噪声记录被用来作为重放图 3中所示的代表性实验的声音。在该实验中,将7只雌性B6小鼠用于在9周龄。以确定女性响应的测试,以播放声音的最佳持续时间,行为参数被用于总10分钟的测试时间,第一和最后五个分分别进行分析。 首先,有在播放过程中(图3A)之前研究的时间留在房间A或B的总时间不?…

Discussion

Here, the results of a representative test showed that female mice can discriminate between artificial male USVs and background noise (Figure 3). The conclusion to be drawn from these results is that the discrimination signal is reflected in the duration of stay in the room and sound zone, and in the duration of searching the mesh in the first 5 min of testing, but not in the second 5 min (Figure 3C, E and F). These data indicate that mice become habituated to the playback sounds, possib…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作是由支持的格兰特提供的援助为日本学术振兴会研究员为AA;通过赠款的援助科学研究的创新领域的JSPS院士(第4501号和第25132712)传统知识;并荣获由麻布大学, 图2的一个研究项目补助,由木原,T.,原田,T。,越田,北晶圆兼容的制造和纳米硅热致超声波发射器的特点转载。在: 传感器和执行器答:物理 ,成交量125,爱思唯尔,页。 426,(2006),与从爱思唯尔许可。

Materials

Soundproof chamber Muromachi Kikai
Small cage CLEA Japan CL-0113-1
Middle cage CLEA Japan CL-0103-1
Ultrasound condenser microphones Avisoft Bioacoustics CM16/CMPA
A/D converter Avisoft Bioacoustics UltraSoundGate116H
Audio software Avisoft Bioacoustics RECORDER USGH
Adobe Audition 3.0 / Audio editing software Adobe Systems Adobe Audition 3.0
Nc-Si emitter Original not commercially available but it is planned to be so in near future
D/A converter National Instruments NI USB-6251 BNC
Attenuator Original
Amplifier Yamatake
PC Windows 7 professional Intel® core i7-2600K CPU @ 3.4GHz, 8GB RAM, 64-bit operating system
Event recorder Excel-macro / Event-scoring software original Programmed by Naoto Akagawa & Takeru Yamamoto
CCD Camera
Rubber plates (made of elastomer resin) Tokyo bouon TI-75BK B4 Cut them to the proper size http://www.piano-bouon.jp/shopping/?pid=1329272401-447630&ca=6&p=3
Giemsa's azur eosin methylene blue solution Merck Millipore 1.09204.0500

References

  1. Panksepp, J. B., et al. Affiliative behavior, ultrasonic communication and social reward are influenced by genetic variation in adolescent mice. PLoS One. 2 (4), e351 (2007).
  2. Scattoni, M. L., Ricceri, L., Crawley, J. N. Unusual repertoire of vocalizations in adult BTBR T+tf/J mice during three types of social encounters. Genes Brain Behav. 10 (1), 44-56 (2010).
  3. Hammerschmidt, K., Radyushkin, K., Ehrenreich, H., Fischer, J. The structure and usage of female and male mouse ultrasonic vocalizations reveal only minor differences. PLoS One. 7 (7), e41133 (2012).
  4. Merten, S., Hoier, S., Pfeifle, C., Tautz, D. A role for ultrasonic vocalisation in social communication and divergence of natural populations of the house mouse (Mus musculus domesticus). PLoS One. 9 (5), e97244 (2014).
  5. Amato, F. R., Moles, A. Ultrasonic vocalizations as an index of social memory in female mice. Behav. Neurosci. 115 (4), 834-840 (2001).
  6. Chabout, J., et al. Adult male mice emit context-specific ultrasonic vocalizations that are modulated by prior isolation or group rearing environment. PLoS One. 7 (1), e29401 (2012).
  7. Ehret, G. Infant rodent ultrasounds–a gate to the understanding of sound communication. Behav. Genet. 35 (1), 19-29 (2005).
  8. Holy, T. E., Guo, Z. Ultrasonic songs of male mice. PLoS Biol. 3 (1), e386 (2005).
  9. Portfors, C. V. Types and functions of ultrasonic vocalizations in laboratory rats and mice. J. Am. Assoc. Lab. Anim. Sci. 46 (1), 28-34 (2007).
  10. Holfoth, D. P., Neilans, E. G., Dent, M. L. Discrimination of partial from whole ultrasonic vocalizations using a go/no-go task in mice. J. Acoust. Soc. Am. 136 (6), 3401 (2014).
  11. Neilans, E. G., Holfoth, D. P., Radziwon, K. E., Portfors, C. V., Dent, M. L. Discrimination of ultrasonic vocalizations by CBA/CaJ mice (Mus musculus) is related to spectrotemporal dissimilarity of vocalizations. PLoS One. 9 (1), e85405 (2014).
  12. Hammerschmidt, K., Radyushkin, K., Ehrenreich, H., Fischer, J. Female mice respond to male ultrasonic ‘songs’ with approach behaviour. Biol. Lett. 5 (5), 589-592 (2009).
  13. Musolf, K., Hoffmann, F., Penn, D. J. Ultrasonic courtship vocalizations in wild house mice, Mus musculus musculus. Anim. Behav. 79 (3), 757-764 (2010).
  14. Asaba, A., et al. Developmental social environment imprints female preference for male song in iice. PloS one. 9 (2), e87186 (2014).
  15. Uematsu, A., et al. Maternal approaches to pup ultrasonic vocalizations produced by a nanocrystalline silicon thermo-acoustic emitter. Brain Res. 1163, 91-99 (2007).
  16. Okabe, S., et al. The effects of social experience and gonadal hormones on retrieving behavior of mice and their responses to pup ultrasonic vocalizations. Zoolog. Sci. 27 (10), 790-795 (2010).
  17. Okabe, S., et al. Pup odor and ultrasonic vocalizations synergistically stimulate maternal attention in mice. Behav. Neurosci. 127 (3), 432-438 (2013).
  18. Shinoda, H., Nakajima, T., Ueno, K., Koshida, N. Thermally induced ultrasonic emission from porous silicon. Nature. 400 (6747), 853-855 (1999).
  19. Kihara, T., Harada, T., Koshida, N. Wafer-compatible fabrication and characteristics of nanocrystalline silicon thermally induced ultrasound emitters. Sensor. Actuat. A-Phys. 125 (2), 422-428 (2006).
  20. Kikusui, T., et al. Cross fostering experiments suggest that mice songs are innate. PloS One. 6 (3), e17721 (2011).
  21. McLean, A. C., Valenzuela, N., Fai, S., Bennett, S. A. Performing Vaginal Lavage, Crystal Violet Staining, and Vaginal Cytological Evaluation for Mouse Estrous Cycle Staging Identification. J. Vis. Exp. (67), e4389 (2012).
  22. Nelson, J. F., Felicio, L. S., Randall, P. K., Sims, C., Finch, C. E. A longitudinal study of estrous cyclicity in aging C57BL/6J mice: I. Cycle frequency, length and vaginal cytology. Biol. Reprod. 27 (2), 327-339 (1982).
  23. Tomihara, K., et al. Effect of ER-beta gene disruption on estrogenic regulation of anxiety in female mice. Physiol. Behav. 96 (2), 300-306 (2009).
  24. Zheng, Q. Y., Johnson, K. R. Hearing loss associated with the modifier of deaf waddler (mdfw) locus corresponds with age-related hearing loss in 12 inbred strains of mice. Hear. Res. 154 (1-2), 45-53 (2001).
  25. Haga, S., et al. The male mouse pheromone ESP1 enhances female sexual receptive behaviour through a specific vomeronasal receptor. Nature. 466 (7302), 118-122 (2010).
  26. Grimsley, J. M., Monaghan, J. J., Wenstrup, J. J. Development of social vocalizations in mice. PLoS One. 6 (3), e17460 (2011).
  27. Sugimoto, H., et al. A role for strain differences in waveforms of ultrasonic vocalizations during male-female interaction. PLoS ONE. 6 (7), (2011).
  28. Hanson, J. L., Hurley, L. M. Female presence and estrous state influence mouse ultrasonic courtship vocalizations. PLoS One. 7 (7), e40782 (2012).
  29. Wang, H., Liang, S., Burgdorf, J., Wess, J., Yeomans, J. Ultrasonic vocalizations induced by sex and amphetamine in M2, M4, M5 muscarinic and D2 dopamine receptor knockout mice. PLoS One. 3 (4), (2008).
  30. Moles, A., Kieffer, B. L., D’Amato, F. R. Deficit in attachment behavior in mice lacking the mu-opioid receptor gene. Science. 304 (5679), 1983-1986 (2004).
  31. Hiramoto, T., et al. Tbx1: identification of a 22q11.2 gene as a risk factor for autism spectrum disorder in a mouse. Hum. Mol. Genet. 20 (24), 4775-4785 (2011).
  32. Ey, E., et al. Absence of deficits in social behaviors and ultrasonic vocalizations in later generations of mice lacking neuroligin4. Genes Brain Behav. , (2012).
  33. Roy, S., Watkins, N., Heck, D. Comprehensive analysis of ultrasonic vocalizations in a mouse model of fragile X syndrome reveals limited, call type specific deficits. PLoS One. 7 (9), e44816 (2012).
check_url/53074?article_type=t

Play Video

Cite This Article
Asaba, A., Kato, M., Koshida, N., Kikusui, T. Determining Ultrasonic Vocalization Preferences in Mice using a Two-choice Playback Test. J. Vis. Exp. (103), e53074, doi:10.3791/53074 (2015).

View Video