Summary

Гормон проблематику 3D Культура модель человеческого эпителия молочной железы

Published: February 07, 2016
doi:

Summary

We describe a 3D culture model of the human breast epithelium that is suitable to study hormone action.

Abstract

The process of mammary epithelial morphogenesis is influenced by hormones. The study of hormone action on the breast epithelium using 2D cultures is limited to cell proliferation and gene expression endpoints. However, in the organism, mammary morphogenesis occurs in a 3D environment. 3D culture systems help bridge the gap between monolayer cell culture (2D) and the complexity of the organism. Herein, we describe a 3D culture model of the human breast epithelium that is suitable to study hormone action. It uses the commercially available hormone-responsive human breast epithelial cell line, T47D, and rat tail collagen type 1 as a matrix. This 3D culture model responds to the main mammotropic hormones: estradiol, progestins and prolactin. The influence of these hormones on epithelial morphogenesis can be observed after 1- or 2-week treatment according to the endpoint. The 3D cultures can be harvested for analysis of epithelial morphogenesis, cell proliferation and gene expression.

Introduction

В отличие от стандартных 2D культур, 3D клеточных культур суррогатных модели позволяют для изучения эпителиального клеточного поведения в физиологически соответствующей контексте, одной напоминающей ткань. 3D культуры молочной железы помогли выяснить многие аспекты развития молочных желез и неоплазии. Тем не менее, большинство моделей культуры 3D доступных в настоящее время являются неподходящими для изучения гормональное действие, поскольку эпителиальные клеточные линии человека, используемые для выполнения этой задачи лишены экспрессии 6,7,9 рецептора гормона.

Здесь мы описываем 3D модель культуры эпителия молочной железы человека, который подходит для изучения гормона действие 12. Эта модель использует коммерчески доступный гормон реагирует человеческий клеточную линию рака молочной эпителиальных, T47D 3,11,13, которые были первоначально полученную из плеврит, полученной из 54-летней пациентки в с проникающими раком протоков молочной железы. Мы используем крысиного хвоста коллагена типа 1 в качестве матрицы. Эта 3D культЮр модель подходит для изучения действия трех основных mammotropic гормонов (эстрадиола, promegestone (аналог прогестерона), и пролактина) на клетках рака молочной эпителиальных человека. Гормон-индуцированный эпителиальный морфология может быть оценена количественно с течением времени с помощью морфометрического анализа 12.

Необходимости повышения плотности посева дает эти 3D культур должны храниться в течение 2-х недель. К этому времени, разработка структур является достаточным для надежного количественной оценки действия гормонов на эпителиальной морфологии. Гели могут также быть собраны в более ранних временных точках для клеточной пролиферации и экспрессии генов анализов. Кроме того, эта модель подходит для проверки эффектов последовательного гормонального лечения; Например, после обработки эстрадиола в течение первой недели и замены с другими гормона / комбинации гормонов в течение следующей недели. Эффект эстрогенных соединений и антиэстрогены, такие как ICI 182,780, также могут быть стуумер использовании этого 3D культуры модель 12.

Protocol

1. Подготовка реагентов Растворите синтетический прогестаген promegestone (R5020) и 17-бета-эстрадиол (Е2) в этаноле, чтобы сделать 10 -3 м растворы. Растворите пролактин в дистиллированной деионизированной водой, чтобы сделать 1 мг / мл маточного раствора. Растворите антиэстроген ICI 182780 ?…

Representative Results

Рисунок 1 приведена процедура для получения гормоночувствительным 3D культур. Эпителиальные структуры наблюдаются в тотальных гелей, культивированных в течение 2 недель в присутствии E2 и в комбинации с другими гормонами. Только отдельные клетки или группы клеток 2-3 присутству…

Discussion

Here, we describe a hormone-sensitive 3D culture model to test the action of hormones on breast epithelium. The response to hormones can be assessed at the tissue morphology, cell proliferation and gene expression levels 12. One limitation of this technique is that visualization during the culture period is restricted to light microscopy since the cultures are grown in a plastic bottom plate. The 3D culture system could be adapted to glass bottom plates to allow for live imaging of the cultures 1.</…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Мы высоко ценим редакционных взносы от Шерил Schaeberle. Это исследование было поддержано Avon грантов # 02-2009-093 и 02-2011-095 и NIEHS / NIH ES 08314 до AMS. Этот материал предназначен исключительно ответственности авторов и не обязательно отражает официальную точку зрения Национального института гигиены окружающей среды наук или Национального института здоровья.

Materials

12-well Tissue Culture Plates (Falcon) Fisher Scientific 08-772-29
15 ml polystyrene conical Tubes Fisher Scientific 14-959-49D
Activated Charcoal Sigma C-5510
Carmine Alum Sigma C1022-100G
Collagenase, Type 3 Worthington S0C11784
Confocal Microscope Zeiss LSM510 Equiped with HeNe 633nm laser
Dextran T-70 Abersham/Pharmacia 17-0280-01
DMEM/F-12, HEPES, no phenol red  Life Technologies 11339-021 Phenol red-free media for hormone use
DMEM, low glucose, pyruvate, no glutamine, no phenol red Life Technologies 11054-020 Phenol red-free media for hormone use
17-β-Estradiol EMD Millipore 3301 Dissolved in Ethanol
Ethanol Koptec V1001
Fetal Bovine Serum Hyclone SH30070.03 For use with hormones, must be Charcoal Dextran stripped 
Filters (115ml) Nalgene 380-0080, 245-0045, 120-0020 0.88, 0.45, 0.20 micron, respectively 
Formalin, 10% Fisher Scientific SF93-20
L-Glutamine (200 mM) Life Technologies 25030-081
ICI 182,780 (fulvestrant) Sigma Aldrich I4409-25MG Dissolved in DMSO
Microtome  Leica RM2155
Tissue embedding media McCormick Scientific 39502004
Penicillin Sigma 7794-10MU Dissolved in 10 ml of distilled deionized water
Permount Fisher Scientific SP15-500
Phosphate Buffered Saline pH 7.4 Sigma Aldrich P3813-10PAK
Prolactin Sigma Aldrich L4021-50UG Dissolved in distilled deionized water
Promegestone Perkin Elmer NLP004005MG Dissolved in Ethanol
Rat-Tail Collagen  Corning  354236 Lots may contain varying concentrations, note accordingly
Scalpel Miltex 4311
Semi-enclosed Benchtop Tissue Processor Leica TP1020
Sodium Hydroxide Sigma Aldrich S5881 Prepare 1N NaOH stock
StaticMaster Anti-static brush  Amstat C3500
Stripette Serological Pipettes  Corning  4101
T-25 flasks Corning  430168
Tissue Cassettes Fisher Scientific 15-200-403E
Wheaton Vials, Glass, 20mL Fisher Scientific 03-341-25D 
Xylene  VWR 95057-822

References

  1. Barnes, C., et al. From single cells to tissues: interactions between the matrix and human breast cells in real time. PLoS ONE. 9, e93325 (2014).
  2. Berthois, Y., Katzenellenbogen, J. A., Katzenellenbogen, B. S. Phenol red in tissue culture is a weak estrogen: implications concerning the study of estrogen responsive cells in culture. Proc.Nat.Acad.Sci.USA. 83, 2496-2500 (1986).
  3. Chalbos, D., Vignon, F., Keydar, I., Rochefort, H. Estrogens stimulate cell proliferation and induce secretory proteins in a human breast cancer cell line (T47D). J.Clin.Endocrinol.Metab. 55, 276-283 (1982).
  4. Dhimolea, E., Maffini, M. V., Soto, A. M., Sonnenschein, C. The role of collagen reorganization on mammary epithelial morphogenesis in a 3D culture model. Biomaterials. 31, 3622-3630 (2010).
  5. Dhimolea, E., Soto, A. M., Sonnenschein, C. Breast epithelial tissue morphology is affected in 3D cultures by species-specific collagen-based extracellular matrix. J.Biomed.Mat.Res.A. 100, 2905-2912 (2012).
  6. Krause, S., et al. Dual regulation of breast tubulogenesis using extracellular matrix composition and stromal cells. Tissue Eng Part A. 18, 520-532 (2012).
  7. Krause, S., Maffini, M. V., Soto, A. M., Sonnenschein, C. A novel 3D in vitro. culture model to study stromal-epithelial interactions in the mammary gland. Tissue Eng.Part C Methods. 14, 261-271 (2008).
  8. Krause, S., Maffini, M. V., Soto, A. M., Sonnenschein, C. The microenvironment determines the breast cancer cells’ phenotype: organization of MCF7 cells in 3D cultures. BMC Cancer. 10, 263-275 (2010).
  9. Lee, G. Y., Kenny, P. A., Lee, E. H., Bissell, M. J. Three-dimensional culture models of normal and malignant breast epithelial cells. Nat.Methods. 4, 359-365 (2007).
  10. Martinson, H. A., Jindal, S., Durand-Rougely, C., Borges, V. F., Schedin, P. Wound healing-like immune program facilitates postpartum mammary gland involution and tumor progression. Int.J.Cancer. , (2014).
  11. Soto, A. M., Murai, J. T., Siiteri, P. K., Sonnenschein, C. Control of cell proliferation: evidence for negative control on estrogen-sensitive T47D human breast cancer cells. Cancer Res. 46, 2271-2275 (1986).
  12. Speroni, L., et al. Hormonal regulation of epithelial organization in a 3D breast tissue culture model. Tissue Eng.Part C Methods. 20, 42-51 (2014).
  13. Vignon, F., Bardon, S., Chalbos, D., Rochefort, H. Antiestrogenic effect of R5020, a synthetic progestin in human breast cancer cells in culture. J.Clin.Endocrinol.Metab. 56, 1124-1130 (1983).
check_url/53098?article_type=t

Play Video

Cite This Article
Speroni, L., Sweeney, M. F., Sonnenschein, C., Soto, A. M. A Hormone-responsive 3D Culture Model of the Human Mammary Gland Epithelium. J. Vis. Exp. (108), e53098, doi:10.3791/53098 (2016).

View Video