Summary

人类乳腺上皮细胞的激素反应3D文化模式

Published: February 07, 2016
doi:

Summary

We describe a 3D culture model of the human breast epithelium that is suitable to study hormone action.

Abstract

The process of mammary epithelial morphogenesis is influenced by hormones. The study of hormone action on the breast epithelium using 2D cultures is limited to cell proliferation and gene expression endpoints. However, in the organism, mammary morphogenesis occurs in a 3D environment. 3D culture systems help bridge the gap between monolayer cell culture (2D) and the complexity of the organism. Herein, we describe a 3D culture model of the human breast epithelium that is suitable to study hormone action. It uses the commercially available hormone-responsive human breast epithelial cell line, T47D, and rat tail collagen type 1 as a matrix. This 3D culture model responds to the main mammotropic hormones: estradiol, progestins and prolactin. The influence of these hormones on epithelial morphogenesis can be observed after 1- or 2-week treatment according to the endpoint. The 3D cultures can be harvested for analysis of epithelial morphogenesis, cell proliferation and gene expression.

Introduction

不同于标准的2D文化,3D细胞培养替代模型允许的上皮细胞行为生理相关方面,一是类似组织的研究。乳腺三维培养有助于阐明乳腺发育和肿瘤的许多方面。然而,大多数现有的三维培养模型的不适合学习激素的作用,因为用于该任务的上皮细胞缺乏激素受体 ​​表达6,7,9。

在此,我们描述了人类乳腺上皮细胞,适合研究激素作用12的三维培养模型。该模型采用的可商购的激素响应性人乳腺上皮细胞系,T47D 3,11,13,其最初从与乳房的浸润性导管癌从54岁的女性患者获得的胸腔积液而得。我们使用鼠尾胶原1型作为基质。这种3D崇拜URE模型适合于对人乳腺上皮细胞中的三个主要mammotropic激素(雌二醇,promegestone(孕酮类似物),和催乳素)的作用的研究。激素诱导的上皮形态可以定量随时间通过形态分析12进行评估。

适当的接种密度允许保持2周这些3D培养。而此时,结构的发展是足以对上皮形态激素作用的强大的定量评估。凝胶也可以在较早的时间点收获细胞增殖和基因表达分析。此外,这种模式是合适的测试顺序激素治疗的效果;例如,在第一周期间用雌二醇处理和置换在随后一周激素等激素/组合之后。雌激素化合物和抗雌激素,例如ICI 182,780的效果,也可以苹果塞进袋子使用这种三维培养模型12死亡。

Protocol

1.试剂的制备溶解合成的孕激素promegestone(R5020)并在乙醇中17-β雌二醇(E2),以使10 -3 M储备溶液。溶解于去离子蒸馏水催乳素,制成1毫克/毫升储液。溶解抗雌激素的ICI 182,780在DMSO中,制成10 -2米原液。长达6个月的储存在-20℃下这些解决方案。 木炭右旋糖酐(CD)剥离血清和CDFBS介质: 在57℃水浴热灭活胎牛血清(FBS)30分钟。 注:仅使用了本协议的剩?…

Representative Results

图1总结了制备激素敏感3D培养的过程。在2周中的E2单独存在下培养,并在与其他激素组合凝胶整个坐骑观察上皮结构。仅单个细胞或2-3细胞的基团存在时无激素添加到培养基(CDFBS培养基)( 图2)。该条件用作阴性对照。 细胞中,在形状,大小,和管腔存在变化的3D培养形式结构。结构的凝胶中的分布通常是均相的。如先前所示,有沿比中心4中…

Discussion

Here, we describe a hormone-sensitive 3D culture model to test the action of hormones on breast epithelium. The response to hormones can be assessed at the tissue morphology, cell proliferation and gene expression levels 12. One limitation of this technique is that visualization during the culture period is restricted to light microscopy since the cultures are grown in a plastic bottom plate. The 3D culture system could be adapted to glass bottom plates to allow for live imaging of the cultures 1.</…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们非常赞赏谢丽尔Schaeberle社论贡献。这项研究是由雅芳资助#02-2009-093和02-2011-095和NIEHS / NIH ES 08314至AMS支持。内容完全是作者的责任,并不一定代表环境健康科学研究所或美国国立卫生研究院的官方意见。

Materials

12-well Tissue Culture Plates (Falcon) Fisher Scientific 08-772-29
15 ml polystyrene conical Tubes Fisher Scientific 14-959-49D
Activated Charcoal Sigma C-5510
Carmine Alum Sigma C1022-100G
Collagenase, Type 3 Worthington S0C11784
Confocal Microscope Zeiss LSM510 Equiped with HeNe 633nm laser
Dextran T-70 Abersham/Pharmacia 17-0280-01
DMEM/F-12, HEPES, no phenol red  Life Technologies 11339-021 Phenol red-free media for hormone use
DMEM, low glucose, pyruvate, no glutamine, no phenol red Life Technologies 11054-020 Phenol red-free media for hormone use
17-β-Estradiol EMD Millipore 3301 Dissolved in Ethanol
Ethanol Koptec V1001
Fetal Bovine Serum Hyclone SH30070.03 For use with hormones, must be Charcoal Dextran stripped 
Filters (115ml) Nalgene 380-0080, 245-0045, 120-0020 0.88, 0.45, 0.20 micron, respectively 
Formalin, 10% Fisher Scientific SF93-20
L-Glutamine (200 mM) Life Technologies 25030-081
ICI 182,780 (fulvestrant) Sigma Aldrich I4409-25MG Dissolved in DMSO
Microtome  Leica RM2155
Tissue embedding media McCormick Scientific 39502004
Penicillin Sigma 7794-10MU Dissolved in 10 ml of distilled deionized water
Permount Fisher Scientific SP15-500
Phosphate Buffered Saline pH 7.4 Sigma Aldrich P3813-10PAK
Prolactin Sigma Aldrich L4021-50UG Dissolved in distilled deionized water
Promegestone Perkin Elmer NLP004005MG Dissolved in Ethanol
Rat-Tail Collagen  Corning  354236 Lots may contain varying concentrations, note accordingly
Scalpel Miltex 4311
Semi-enclosed Benchtop Tissue Processor Leica TP1020
Sodium Hydroxide Sigma Aldrich S5881 Prepare 1N NaOH stock
StaticMaster Anti-static brush  Amstat C3500
Stripette Serological Pipettes  Corning  4101
T-25 flasks Corning  430168
Tissue Cassettes Fisher Scientific 15-200-403E
Wheaton Vials, Glass, 20mL Fisher Scientific 03-341-25D 
Xylene  VWR 95057-822

References

  1. Barnes, C., et al. From single cells to tissues: interactions between the matrix and human breast cells in real time. PLoS ONE. 9, e93325 (2014).
  2. Berthois, Y., Katzenellenbogen, J. A., Katzenellenbogen, B. S. Phenol red in tissue culture is a weak estrogen: implications concerning the study of estrogen responsive cells in culture. Proc.Nat.Acad.Sci.USA. 83, 2496-2500 (1986).
  3. Chalbos, D., Vignon, F., Keydar, I., Rochefort, H. Estrogens stimulate cell proliferation and induce secretory proteins in a human breast cancer cell line (T47D). J.Clin.Endocrinol.Metab. 55, 276-283 (1982).
  4. Dhimolea, E., Maffini, M. V., Soto, A. M., Sonnenschein, C. The role of collagen reorganization on mammary epithelial morphogenesis in a 3D culture model. Biomaterials. 31, 3622-3630 (2010).
  5. Dhimolea, E., Soto, A. M., Sonnenschein, C. Breast epithelial tissue morphology is affected in 3D cultures by species-specific collagen-based extracellular matrix. J.Biomed.Mat.Res.A. 100, 2905-2912 (2012).
  6. Krause, S., et al. Dual regulation of breast tubulogenesis using extracellular matrix composition and stromal cells. Tissue Eng Part A. 18, 520-532 (2012).
  7. Krause, S., Maffini, M. V., Soto, A. M., Sonnenschein, C. A novel 3D in vitro. culture model to study stromal-epithelial interactions in the mammary gland. Tissue Eng.Part C Methods. 14, 261-271 (2008).
  8. Krause, S., Maffini, M. V., Soto, A. M., Sonnenschein, C. The microenvironment determines the breast cancer cells’ phenotype: organization of MCF7 cells in 3D cultures. BMC Cancer. 10, 263-275 (2010).
  9. Lee, G. Y., Kenny, P. A., Lee, E. H., Bissell, M. J. Three-dimensional culture models of normal and malignant breast epithelial cells. Nat.Methods. 4, 359-365 (2007).
  10. Martinson, H. A., Jindal, S., Durand-Rougely, C., Borges, V. F., Schedin, P. Wound healing-like immune program facilitates postpartum mammary gland involution and tumor progression. Int.J.Cancer. , (2014).
  11. Soto, A. M., Murai, J. T., Siiteri, P. K., Sonnenschein, C. Control of cell proliferation: evidence for negative control on estrogen-sensitive T47D human breast cancer cells. Cancer Res. 46, 2271-2275 (1986).
  12. Speroni, L., et al. Hormonal regulation of epithelial organization in a 3D breast tissue culture model. Tissue Eng.Part C Methods. 20, 42-51 (2014).
  13. Vignon, F., Bardon, S., Chalbos, D., Rochefort, H. Antiestrogenic effect of R5020, a synthetic progestin in human breast cancer cells in culture. J.Clin.Endocrinol.Metab. 56, 1124-1130 (1983).
check_url/53098?article_type=t

Play Video

Cite This Article
Speroni, L., Sweeney, M. F., Sonnenschein, C., Soto, A. M. A Hormone-responsive 3D Culture Model of the Human Mammary Gland Epithelium. J. Vis. Exp. (108), e53098, doi:10.3791/53098 (2016).

View Video