Summary

Meiotic Spindle Assessment in Mouse Oocytes by siRNA-mediated Silencing

Published: October 11, 2015
doi:

Summary

Here, we present a protocol for specific siRNA-mediated mRNA depletion followed by immunofluorescence analysis to evaluate meiotic spindle assembly and organization in mouse oocytes. This protocol is suitable for in vitro depletion of transcripts and functional assessment of different spindle and/or MTOC-associated factors in oocytes.

Abstract

Errors in chromosome segregation during meiotic division in gametes can lead to aneuploidy that is subsequently transmitted to the embryo upon fertilization. The resulting aneuploidy in developing embryos is recognized as a major cause of pregnancy loss and congenital birth defects such as Down’s syndrome. Accurate chromosome segregation is critically dependent on the formation of the microtubule spindle apparatus, yet this process remains poorly understood in mammalian oocytes. Intriguingly, meiotic spindle assembly differs from mitosis and is regulated, at least in part, by unique microtubule organizing centers (MTOCs). Assessment of MTOC-associated proteins can provide valuable insight into the regulatory mechanisms that govern meiotic spindle formation and organization. Here, we describe methods to isolate mouse oocytes and deplete MTOC-associated proteins using a siRNA-mediated approach to test function. In addition, we describe oocyte fixation and immunofluorescence analysis conditions to evaluate meiotic spindle formation and organization.

Introduction

Meiosis is a unique division process that occurs in gametes (oocytes and sperm) and involves two successive divisions without intervening DNA synthesis to segregate homologous chromosomes and sister chromatids during meiosis-I and meiosis-II, respectively1. Errors in chromosome segregation during meiotic division in oocytes can result in aneuploidy, which is inherited by the embryo during fertilization. Notably, the incidence of aneuploidy in developing embryos increases with advancing maternal age and is a major cause of congenital birth defects as well as pregnancy loss in women1,2, thus, underscoring an important need to understand the molecular basis of aneuploidy during meiotic division.

During cell division, chromosome segregation is crucially dependent on assembly of the microtubule spindle apparatus and establishment of stable chromosome-microtubule interactions for correct attachment to opposite spindle poles. Importantly, meiotic spindle formation in mammalian oocytes differs from mitosis in somatic cells, and is regulated by unique microtubule-organizing centers (MTOCs) that lack centrioles3,4. Essential proteins necessary for microtubule nucleation and organization localize to oocyte MTOCs, including γ-tubulin that catalyzes microtubule assembly. In addition, pericentrin functions as an essential scaffolding protein, which binds and anchors γ-tubulin as well as other factors at MTOCs5. Notably, our studies demonstrate that depletion of key MTOC-associated proteins disrupts meiotic spindle organization and leads to chromosome segregation errors in oocytes, which are not fully resolved by the spindle assembly checkpoint (SAC)6,7. Therefore, defects in spindle stability, that do not trigger meiotic arrest, pose a significant risk in contributing to aneuploidy. Despite their essential role in spindle assembly and organization, oocyte MTOC protein composition and function remains poorly understood.

Testing the function of specific target proteins in mammalian oocytes is challenging, as the cells become transcriptionally quiescent shortly before the resumption of meiosis8,9. Hence, pre-ovulatory oocytes rely on maternal mRNA stores to resume meiosis and support meiotic division as well as the first cleavage divisions after fertilization10,11. The efficacy of RNA interference (RNAi) mediated degradation of mRNA transcripts in mammalian oocytes is well established and maternal RNAs recruited for translation during meiotic maturation are particularly amenable to siRNA targeting 12-14. Therefore, microinjection of short interfering RNAs (siRNAs) into oocytes provides a valuable approach to deplete target mRNAs for functional testing.

Here, we describe methods for the isolation of mouse oocytes and siRNA-mediated depletion of specific transcripts to test the function of an essential MTOC-associated protein, pericentrin. In addition, we describe immunofluorescence analysis conditions to evaluate meiotic spindle formation in oocytes.

Protocol

This protocol was approved by the Institutional Animal Care and Use Committee (IACUC) at the University of Georgia. 1. Preparations For oocyte culture, purchase or freshly prepare Minimal Essential Medium (MEM) and supplement with 3 mg/ml bovine serum albumin (BSA) as outlined in Table 1. Place a polystyrene bottle on a loading balance (tare to zero). Add all reagents, except BSA, in order and bring up the final volume with MQ-water by weight to a total of 250 g. T…

Representative Results

Microinjection of siRNAs provides an effective approach for mRNA degradation and subsequent protein depletion in oocytes, which enables efficient and highly specific functional testing of different target factors in vitro. Subsequently, immunofluorescence is used for specific phenotype analysis as well as to validate protein depletion in siRNA-injected oocytes. In the current example, fluorescent labeling of individual oocytes with DAPI together with anti-tubulin and anti-pericentrin antibodies enabled: (i) conf…

Discussion

While there are multiple methods for exogenous nucleic acid transfer into somatic cells, such as electroporation and transfection, microinjection is the optimal method for delivery of RNA molecules into transcriptionally quiescent mouse oocytes. The current protocol provides an effective approach for in vitro depletion of specific mRNAs that enable the functional testing of different spindle and/or MTOC-associated factors in oocytes. This approach results in efficient transcript depletion and is highly adaptable…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This research was supported in part by the University of Georgia, and a grant (HD071330) from the National Institutes of Health to MMV.

Materials

Reagents
Pregnant Mare's Serum Gonadotropin (PMSG) EMD Biosciences 367222
Minimal Essential Medium (MEM) *Recipe outlined in Table 1
Earle's Balanced Salt Solution (10x) Sigma E-7510
Sodium Bicarbonate Sigma S-5761
Pyruvic Acid, sodium salt  Sigma P-5280
Penicillin G, potassium salt  Sigma P-7794
Streptomycin Sulfate  Sigma S-9137
L-Glutamine  Sigma G-8540
EDTA, disodium salt dihydrate  Sigma E-4884
Essential Amino Acids (50x) Gibco  11130-051
MEM Vitamin Mixture (100x) Sigma M-6895
Phenol Red solution Sigma P-0290
Bovine Serum Albumin (BSA) Sigma A1470
Milrinone Sigma M4659
Fetal Bovine Serum (FBS) Hyclone SH30070.01
EmbryoMax M2 Media with Hepes EMD Millipore MR-015-D
siRNAs targeting Pericentrin Qiagen GS18541
Negative control siRNAs  Qiagen SI03650318
Paraformaldehyde (16% solution) Electron Microscopy Sciences 15710
Triton-X Sigma T-8787
Phosphate Buffered Saline (PBS) Hyclone SH30028.02
Anti-Pericentrin (rabbit) Covance PRB-432C
Anti-acetylated a-tubulin (mouse) Sigma T-6793
Goat anti-rabbbit Alexa Fluor 488 Invitrogen A-21430
Goat anti -mouse Alexa Fluor 555 Invitrogen A-11017
Major Equipment
Stereomicroscope (SMZ 800) Nikon
Upright Fluorescent Microscope Leica Microsystems
Inverted Microscope Nikon 
Femtojet Micro-injections System Eppenforf
Micro manipulators Eppendorf
Micro-injection needles (femtotips) Eppendorf 930000035
Holding pipettes (VacuTip) Eppendorf 930001015
Plasticware
35mm culture dishes Corning Life Sciences 351008
4-well plates Thermo Scientific 176740
96 well plates Corning Life Sciences 3367
0.45 mm CA Filter System Corning Life Sciences 430768

References

  1. Nagaoka, S. I., Hassold, T. J., Hunt, P. A. Human aneuploidy: mechanisms and new insights into an age-old problem. Nat Rev Genet. 13 (7), 493-504 (2012).
  2. Hassold, T. J., Hunt, P. A. To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet. 2 (4), 280-291 (2001).
  3. Szollosi, D., Calarco, P., Donahue, R. P. Absence of Centrioles in the First and Second Meiotic Spindles of Mouse Oocytes. J Cell Sci. 11 (2), 521-541 (1972).
  4. Manandhar, G., Schatten, H., Sutovsky, P. Centrosome Reduction During Gametogenesis and Its Significance. Biol Reprod. 72 (1), 2-13 (2005).
  5. Zimmerman, W. C., Sillibourne, J., Rosa, J., Doxsey, S. J. Mitosis-specific anchoring of gamma tubulin complexes by pericentrin controls spindle organization and mitotic entry. Mol Biol Cell. 15 (8), 3642-3647 (2004).
  6. Ma, W., Baumann, C., Viveiros, M. M. NEDD1 is crucial for meiotic spindle stabilty and accurate chromosome segregation in mammalian oocytes. Dev Biol. 339 (439-450), (2010).
  7. Ma, W., Viveiros, M. M. Depletion of pericentrin in mouse oocytes disrupts microtubule organizing center function and meiotic spindle organization. Mol Reprod Dev. 81 (11), 1019-1029 (2014).
  8. Bouniol-Baly, C., et al. Differential Transcriptional Activity Associated with Chromatin Configuration in Fully Grown Mouse Germinal Vesicle Oocytes. Biol Reprod. 60 (3), 580-587 (1999).
  9. De La Fuente, R., Eppig, J. J. Transcriptional Activity of the Mouse Oocyte Genome: Companion Granulosa Cells Modulate Transcription and Chromatin Remodeling. Dev Biol. 229 (1), 224-236 (2001).
  10. Hodgman, R., Tay, J., Mendez, R., Richter, J. D. CPEB phosphorylation and cytoplasmic polyadenylation are catalyzed by the kinase IAK1/Eg2 in maturing mouse oocytes. Development. 128 (14), 2815-2822 (2001).
  11. De La Fuente, R. Chromatin modifications in the germinal vesicle (GV) of mammalian oocytes. Dev Biol. 292 (1), 1-12 (2006).
  12. Wianny, F., Zernicka-Goetz, M. Specific interference with gene function by double-stranded RNA in early mouse development. Nat Cell Biol. , 270-275 (2000).
  13. Svoboda, P., Stein, P., Hayashi, H., Schultz, R. M. Selective reduction of dormant maternal mRNAs in mouse oocytes by RNA interference. Development. 127 (19), 4147-4156 (2000).
  14. Svoboda, P. Renaissance of mammalian endogenous RNAi. FEBS Letters. 588 (15), 2550-2556 (1016).
  15. Behringer, R., Gertsenstein, M., Nagy, K., Nagy, A. . Manipulating the Mouse Embryo: A Laboratory Manual. , (2014).
check_url/53586?article_type=t

Play Video

Cite This Article
Baumann, C., Viveiros, M. M. Meiotic Spindle Assessment in Mouse Oocytes by siRNA-mediated Silencing. J. Vis. Exp. (104), e53586, doi:10.3791/53586 (2015).

View Video