Summary

一个多腔动态单一酶幻影超极化磁共振剂研究的用途

Published: April 15, 2016
doi:

Summary

A multi-compartment dynamic phantom is used to simulate some biology of interest for metabolic studies using hyperpolarized magnet resonance agents.

Abstract

磁共振超极化底物的影像显示在实时关键的生化过程的评估重要的临床前景。由于受超极化状态施加限制的根本,充满异国情调的成像和重建技术是常用的。对于动态的,多光谱成像方法表征一个实用的系统迫切需要。这样的系统必须可重复复述正常和病理组织的相关化学动力学。最广泛使用的基材日期是超极化[1- 13 C]丙酮酸癌症代谢的评估。我们描述了介导丙酮酸至乳酸的转化基于酶的幻象系统。反应通过超极化剂的注入开始到虚线内的多个腔室,其中每一个包含不同的是控制反应速率的试剂的浓度。多个隔室是必要的,以确保伊马蔓茎序列忠实捕获组织的空间和代谢异质性。该系统将通过提供化学动力学所不具备与传统幻影,以及控制和再现那是不可能在体内帮助的先进影像战略的制定和验证。

Introduction

13 C标记的化合物的超极化的磁共振成像(MRI)的临床影响主要取决于其测量流经实时磁共振光谱学和光谱成像1-5化学转化率的能力。期间顺序开发和验证,动态化学转化一般是通过体内体外模型6-9,提供有限的控制和再现性来实现的。对于稳健的测试和质量保证,它保留了化学转化特有的这种测量更多的控制系统将是首选。我们概述实现使用动态单一酶虚线可重复的方式这种转换的方法。

与超极化13 C制剂的研究大多集中于一个正常运作的生物环境成像超极化基板。这是显而易见的选择,如果目标是研究生物人处理或确定在临床护理潜在影响。然而,如果一些测量系统或数据处理算法的表征是期望的,生物模型有许多缺点,如固有的空间和时间变化10。然而,传统的静态幻影缺乏化学转化驱动在超极化基底的MRI主要临床利益,并且不能用于表征转化率或其他动态参数11的检测。使用单一酶系统,我们可以提供可控的和可重复的化学转化,从而实现动态显像策略严格的审查。

该系统是针对谁正在开发的成像策略超极化基板,并希望反对其他方法相比性能特征调查。如果静态测量所需的终结点,然后静13 C-标有代谢幻影无线会足够了11。在另一端,如果更复杂的生物特征是该方法(交货,蜂窝密度 )则实际的生物模型,将需要12-14的关键。该系统非常适合的,旨在提供明显的化学转化率的定量测量成像战略评估。

Protocol

注:(幻影设计)两个3毫升室进行机加工出来的Ultem的,并配有PEEK管(1.5875毫米外径0.762毫米ID)注射和排气。庭置于充满水( 图1)的50ml离心管中。为了避免气泡产生信号的空隙,腔和管预填充去离子水(DH 2 O)。 1.溶液的制备制备1升缓冲溶液(81.3毫摩尔Tris pH 7.6中,203.3毫摩尔NaCl)。称取11.38克的Trizma预设晶体pH值7.6和11.88克NaCl和1升的dh 2<…

Representative Results

切片选择性的2D图像用快照radEPSI序列获得。代谢物图像用滤波反投影重建。代谢图像以及与质子图像对准,如在图2中看到的,在这种系统超极化乳酸盐信号只能从超极化的丙酮酸的酶转化产生的。在图4中 ,底室,具有较高的LDH浓度,具有更强的乳酸盐和较弱丙酮酸信号相比顶室作为。使用相对代谢物信号作为酶浓度的估计的乳酸为丙酮酸比在下…

Discussion

超极化的代谢物实时成像具有序列设计,验证和质量控制许多独特的挑战。解决时空和光谱异质性的能力提供大量的临床潜力,但是排除了与常规MRI相关的质量保证和验证方法。复杂的成像序列或重建算法可能会有细微的依赖使得它们难以定性或验证成像实验之外。生物的异质性和其它实际问题限制使用的体内体外模型来表征或验证序列,硬件或数据处理算法。

<p class…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作是由CPRIT补助(RP140021-P5)和朱莉娅·琼斯马修斯癌症研究学者CPRIT研究培训奖(RP140106,CMW)的支持。

Materials

BioSpect 7T Bruker BioSpec 70/30 USR 7 Tesla Pre-Clinical MRI Scanner
HyperSense Oxford Instruments Hypersense DNP Polarizer Dynamic Nuclear Polarizer for MRI agents
1-13C-Pyrvic Acid Sigma Aldrich 677175 Carbon 13 labled neat pyruvic acid
Trityl Radical GE Healthcare OX063 Free radical used in Dynamic Nuclear Polarization
NaOH Sigma Aldrich S8045
EDTA Sigma Aldrich E6758 Ethylenediaminetetraacetic acid
LDH Worthingthon LS002755 Lactate Dehydrogenase from rabbit muscle
NADH Sigma Aldrich N4505 β-Nicotinamide adenine dinucleotide, reduced dipotassium salt
Trizma Sigma Aldrich T7943 Trizma® Pre-set crystals
NaCl Sigma Aldrich S7653

References

  1. Merritt, M. E., et al. Hyperpolarized 13C allows a direct measure of flux through a single enzyme-catalyzed step by NMR. Proceedings of the National Academy of Sciences of the United States of America 104. 104, 19773-19777 (2007).
  2. Rodrigues, T. B., et al. Magnetic resonance imaging of tumor glycolysis using hyperpolarized 13C-labeled glucose. Nature medicine. 20, 93-97 (2014).
  3. Day, S. E., et al. Detecting tumor response to treatment using hyperpolarized 13C magnetic resonance imaging and spectroscopy. Nature medicine. 13, 1382-1387 (2007).
  4. Keshari, K. R., et al. Hyperpolarized 13C dehydroascorbate as an endogenous redox sensor for in vivo metabolic imaging. Proceedings of the National Academy of Sciences of the United States of America. 108, 18606-18611 (2011).
  5. Gallagher, F. A., et al. Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labelled bicarbonate. Nature. 453, 940-943 (2008).
  6. Larson, P. E., et al. Investigation of tumor hyperpolarized [1-13C]-pyruvate dynamics using time-resolved multiband RF excitation echo-planar MRSI. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine. 63, 582-591 (2010).
  7. Cunningham, C. H., Dominguez Viqueira, W., Hurd, R. E., Chen, A. P. Frequency correction method for improved spatial correlation of hyperpolarized 13C metabolites and anatomy. NMR in biomedicine. 27, 212-218 (2014).
  8. Larson, P. E., et al. Fast dynamic 3D MR spectroscopic imaging with compressed sensing and multiband excitation pulses for hyperpolarized 13C studies. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine. 65, 610-619 (2011).
  9. Mayer, D., et al. Application of subsecond spiral chemical shift imaging to real-time multislice metabolic imaging of the rat in vivo after injection of hyperpolarized 13C1-pyruvate. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine. 62, 557-564 (2009).
  10. Walker, C. M., et al. A Catalyzing Phantom for Reproducible Dynamic Conversion of Hyperpolarized [1-C-13]-Pyruvate. PloS one. 8, e71274 (2013).
  11. Levin, Y. S., Mayer, D., Yen, Y. F., Hurd, R. E., Spielman, D. M. Optimization of fast spiral chemical shift imaging using least squares reconstruction: application for hyperpolarized (13)C metabolic imaging. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine. 58, 245-252 (2007).
  12. von Morze, C., et al. Simultaneous multiagent hyperpolarized (13)C perfusion imaging. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine. 72, 1599-1609 (2014).
  13. Sogaard, L. V., Schilling, F., Janich, M. A., Menzel, M. I., Ardenkjaer-Larsen, J. H. In vivo measurement of apparent diffusion coefficients of hyperpolarized (1)(3)C-labeled metabolites. NMR in biomedicine. 27, 561-569 (2014).
  14. Patrick, P. S., et al. Detection of transgene expression using hyperpolarized 13C urea and diffusion-weighted magnetic resonance spectroscopy. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine. 73, 1401-1406 (2015).
check_url/53607?article_type=t

Play Video

Cite This Article
Walker, C. M., Merritt, M., Wang, J., Bankson, J. A. Use of a Multi-compartment Dynamic Single Enzyme Phantom for Studies of Hyperpolarized Magnetic Resonance Agents. J. Vis. Exp. (110), e53607, doi:10.3791/53607 (2016).

View Video