Summary

L'utilizzo di coniglio Occhi in farmacocinetiche Studi di intraoculari droga

Published: July 23, 2016
doi:

Summary

Rabbits are widely used to study the pharmacokinetics of intraocular drugs. We describe a method for conducting pharmacokinetic studies of intraocular drugs using rabbit eyes.

Abstract

La via di somministrazione del farmaco intraoculare permette la fornitura di elevate concentrazioni di farmaci terapeutici, riducendo al minimo l'assorbimento sistemico. Diversi farmaci vengono somministrati nella camera anteriore o vitreo, e l'iniezione intraoculare è stata efficace nel curare varie malattie intraoculari. occhi coniglio sono stati ampiamente utilizzati per la ricerca oftalmica, l'animale è maneggevole ed economico rispetto ad altri mammiferi, e la dimensione di un occhio di coniglio è simile a quella di un occhio umano. Usando un ago G 30, i farmaci possono essere iniettati negli spazi intracameral e intravitreale di occhi di coniglio. I bulbi oculari sono poi congelati fino al momento dell'analisi, e possono essere suddivisi in l'umore acqueo, vitreo, retina e / coroide. I campioni vitreo e la retina / coroide possono essere omogeneizzati e solubilizzati prima dell'analisi. Poi, immunodosaggi possono essere eseguite per misurare le concentrazioni dei farmaci intraoculari in ciascun compartimento. modelli farmacocinetici appropriati possono essereutilizzato per calcolare diversi parametri, come l'emivita e concentrazione massima del farmaco. occhi coniglio può essere un buon modello per gli studi di farmacocinetica dei farmaci intraoculari.

Introduction

Prima dell'avvento di consegna della droga intraoculare, la preoccupazione principale della terapia medica per le malattie intraoculari è stata l'efficienza con la quale il farmaco poteva penetrare nell'occhio. La barriera emato-oculare previene molte sostanze, compresi i farmaci, dalla diffusione nell'occhio. Pertanto, le concentrazioni di farmaci che sono superiori ai livelli terapeutici possono non essere ottenuti facilmente. Il metodo di somministrazione dei farmaci intraoculare, tra cui intracameral e intravitreali iniezioni, può escludere direttamente la barriera emato-oculare 1-3, in modo che le concentrazioni terapeutiche di farmaci possono essere raggiunti negli occhi 4,5.

Di conseguenza, intravitreale consegna della droga è diventato un metodo popolare di trattamento per diverse malattie intraoculari 5,6. Ad esempio, l'iniezione intravitreale è ampiamente eseguita per la degenerazione maculare senile, la retinopatia diabetica, occlusioni venose retiniche, e le infezioni intraoculari 7-10. In particolare, poichél'introduzione di farmaci anti-VEGF, la frequenza delle iniezioni intravitreali è notevolmente aumentato per il trattamento delle patologie retiniche. Pertanto, è importante capire la farmacocinetica intraoculari di tali farmaci per valutare l'efficacia e la sicurezza della terapia medica.

Sebbene l'amministrazione intraoculare di farmaci è considerato un importante passo avanti nella terapia medica per le malattie oculari, il monitoraggio della concentrazione del farmaco all'interno del bulbo oculare è tecnicamente impegnativo. Poiché occhi umani contengono soltanto piccole quantità di umor acqueo (circa 200 ml) e vetrose (circa 4,5 ml, Tabella 1), è tecnicamente difficile ottenere una quantità sufficiente di fluido oculare per misurare la concentrazione di farmaco. Inoltre, i metodi che vengono utilizzati per ottenere il fluido oculare, come intercettazioni vitreo o paracentesi della camera anteriore, possono danneggiare il tessuto oculare e determinare gravi complicazioni, come la cataratta, endoftalmite, odistacco della retina 11,12. Di conseguenza, i modelli animali sono utilizzati in studi di farmacocinetica di farmaci comunemente usati intraoculari 13. Tra questi modelli animali, conigli e scimmie sono gli animali più frequentemente utilizzati.

Conigli, che sono piccoli mammiferi dell'ordine Lagomorpha nella famiglia dei leporidi, si trovano in varie parti del mondo. Dato che i conigli non sono aggressivi, sono facili da gestire, utilizzare in un esperimento, e osservare. Riduzione dei costi, pronta disponibilità dell'animale, simile dimensione occhio agli esseri umani, e un ampio database di informazioni per il confronto favore l'esecuzione di studi di farmacocinetica utilizzando gli occhi di coniglio. In questo lavoro, un protocollo per gli studi di farmacocinetica dei farmaci intraoculari negli occhi di coniglio viene descritta.

Protocol

Il nostro protocollo segue le linee guida della cura istituzionale degli animali e utilizzo Comitato (IACUC) di Seoul National University Hospital Bundang, che ha approvato tutte le procedure animali e metodi di cura degli animali presentati in questo protocollo. Il IACUC è in piena conformità con l'ottava edizione della Guida per la cura e l'uso di animali da laboratorio (2011). Tutte le procedure sono state eseguite con l'aderenza alle linee guida dell'Associazione per la Ricerca e la Visione e Ophth…

Representative Results

La procedura utilizzata per effettuare iniezioni intravitreali di un farmaco di interesse in occhi di coniglio con tecniche sterili è mostrato in Figura 1. Gli occhi trattati sono enucleati in un momento programmato e conservati a -80 ° C. Per l'analisi, tre scomparti, l'umore acqueo, il vitreo e la retina / coroide, vengono separati dagli occhi coniglio congelati, come mostrato nella Figura 2. I campioni dei compartimenti sono preparati per l&…

Discussion

With the increasing use of intraocular drugs, such as anti-vascular endothelial growth factor (VEGF) agents, for the treatment of diverse ocular diseases, knowledge of the tissue distribution and clearance of the drug after the intraocular injection is important. Understanding the pharmacokinetics of intraocular drugs is important for understanding the efficacy and safety of drugs, determining the optimal dosage of the drugs, and minimizing systemic or intraocular complications. However, detailed pharmacokinetic studies …

Disclosures

The authors have nothing to disclose.

Acknowledgements

We would like to thank Ms. Ji Hyun Park and Ji Yeon Park for their technical assistance in the animal experiments. This work was supported by a grant from the Seoul National University Bundang Hospital Research Fund (grant number: Grant No. 14-2014-022) and from a grant (CCP-13-02-KIST) from the Convergence Commercialization Project of the National Research Council of Science and Technology, Seoul, Korea.

Materials

Zoletil Virbac Laboratories, Carros Cedex, France
Xylazine hydrochloride  Fort Dodge Laboratories, Fort Dodge, IA
Proparacaine hydrochloride (Alcaine) Alcon laboratories, Fort Worth, TX
Phenylephrine hydrochloride and tropicamide Santen Pharmaceutical, Co., Osaka, Japan
Recombinant Human VEGF 165 R&D systems 293-VE-050
Carbobate-Bicarbonate buffer SIGMA C3041-50CAP
NUNC MICROWELL 96F                                                               W/LID NUNCLON D SI                                                                          Thermo SCIENTIFIC 167008 96 well plate
Bovine Serum Albumin (BSA) 25grams(Net) BOVOGEN BSA025
Phosphate Buffered Saline (PBS) pH7.4 (1X), 500mL gibco 10010-023
Sheep anti-Human IgG Secondary Antibody, HRP conjugate Thermo SCIENTIFIC PA1-28652
Goat Anti-Human IgG Fc(HRP) abcam ab97225
Goat anti-Human IgG, Fab'2 Secondary Antibody, HRP conjugate Thermo SCIENTIFIC PA1-85183
CelLytic MT  Cell Lysis Reagent SIGMA C3228-50ML lysis buffer
100 Scalpel Blades nopa instruments BLADE #15
100 Scalpel Blades nopa instruments BLADE #10
FEATHER SURGICAL BLADE STAINLESS STEEL FEATHER 11
1-StepTM TMB-Blotting substrate solution, 250mL Thermo SCIENTIFIC 34018
Stable Peroxide Substrate Buffer (10X), 100mL Thermo SCIENTIFIC 34062
Softmax Pro Molecular Devices v.5.4.1 software for generating standard curve
SAAM II  Saam Institute, Seattle, WA software for pharmacokinetic modeling
Phoenix WinNonlin Pharsight, Cary, NC v. 6.3 software for pharmacokinetic modeling
Avastin (bevacizumab) Genentech

References

  1. Urtti, A. Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Deliv Rev. 58, 1131-1135 (2006).
  2. Geroski, D. H., Edelhauser, H. F. Drug delivery for posterior segment eye disease. Invest Ophthalmol Vis Sci. 41, 961-964 (2000).
  3. Ghate, D., Edelhauser, H. F. Ocular drug delivery. Expert Opin Drug Deliv. 3, 275-287 (2006).
  4. Del Amo, M. E., Urtti, A. Current and future ophthalmic drug delivery systems. A shift to the posterior segment. Drug Discov Today. 13, 135-143 (2008).
  5. Avery, R. L., et al. Intravitreal injection technique and monitoring: updated guidelines of an expert panel. Retina. 34, S1-S18 (2014).
  6. Kim, Y. C., Chiang, B., Wu, X., Prausnitz, M. R. Ocular delivery of macromolecules. J Control Release. 190, 172-181 (2014).
  7. Group, C. R., et al. Ranibizumab and bevacizumab for neovascular age-related macular degeneration. N Engl J Med. 364, 1897-1908 (2011).
  8. Campochiaro, P. A., et al. Sustained benefits from ranibizumab for macular edema following central retinal vein occlusion: twelve-month outcomes of a phase III study. Ophthalmology. 118, 2041-2049 (2011).
  9. Brown, D. M., et al. Ranibizumab for macular edema following central retinal vein occlusion: six-month primary end point results of a phase III study. Ophthalmology. 117, 1124-1133 (2010).
  10. Diabetic Retinopathy Clinical Research Network. Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema. N Engl J Med. 372, 1193-1203 (2015).
  11. McCannel, C. A. Meta-analysis of endophthalmitis after intravitreal injection of anti-vascular endothelial growth factor agents: causative organisms and possible prevention strategies. Retina. 31, 654-661 (2011).
  12. Meyer, C. H., et al. Incidence of rhegmatogenous retinal detachments after intravitreal antivascular endothelial factor injections. Acta Ophthalmol. 89, 70-75 (2011).
  13. Del Amo, E. M., Urtti, A. Rabbit as an animal model for intravitreal pharmacokinetics: Clinical predictability and quality of the published data. Exp Eye Res. 137, 111-124 (2015).
  14. Hughes, P. M., Krishnamoorthy, R., Mitra, A. K. Vitreous disposition of two acycloguanosine antivirals in the albino and pigmented rabbit models: a novel ocular microdialysis technique. J Ocul Pharmacol Ther. 12, 209-224 (1996).
  15. Ahn, J., et al. Pharmacokinetics of Intravitreally Injected Bevacizumab in Vitrectomized Eyes. J Ocul Pharmacol Ther. , (2013).
  16. Park, S. J., et al. Intraocular pharmacokinetics of intravitreal vascular endothelial growth factor-Trap in a rabbit model. Eye (Lond). 29, 561-568 (2015).
  17. Jager, R. D., Aiello, L. P., Patel, S. C., Cunningham, E. T. Risks of intravitreous injection: a comprehensive review. Retina. 24, 676-698 (2004).
  18. Durairaj, C., Shah, J. C., Senapati, S., Kompella, U. B. Prediction of vitreal half-life based on drug physicochemical properties: quantitative structure-pharmacokinetic relationships (QSPKR). Pharm Res. 26, 1236-1260 (2009).
  19. Ahn, S. J., et al. Intraocular pharmacokinetics of ranibizumab in vitrectomized versus nonvitrectomized eyes. Invest Ophthalmol Vis Sci. 55, 567-573 (2014).
  20. Mochizuki, K., et al. Intraocular kinetics of ceftazidime (Modacin). Ophthalmic Res. 24, 150-154 (1992).
  21. Bakri, S. J., et al. Pharmacokinetics of intravitreal ranibizumab (Lucentis). Ophthalmology. 114, 2179-2182 (2007).
  22. Kondo, T., Miura, M., Imamichi, M. Measurement method of the anterior chamber volume by image analysis. Br J Ophthalmol. 70, 668-672 (1986).
  23. Toris, C. B., Yablonski, M. E., Wang, Y. L., Camras, C. B. Aqueous humor dynamics in the aging human eye. Am J Ophthalmol. 127, 407-412 (1999).
  24. Remtulla, S., Hallett, P. E. A schematic eye for the mouse, and comparisons with the rat. Vision Res. 25, 21-31 (1985).
  25. Barza, M., Zak, O., Sande, M. A. Animal models in evaluation of chemotherapy of ocular infections. Experimental Models in Antimicrobial Chemotherapy. , 187-211 (1986).
  26. Hughes, A. A schematic eye for the rat. Vision Res. 19, 569-588 (1979).
  27. Maurice, D. M., Mishima, S. . Ocular pharmacokinetics. 69, (1984).
  28. Greenbaum, S., Lee, P. Y., Howard-Williams, J., Podos, S. M. The optically determined corneal and anterior chamber volumes of the cynomolgus monkey. Curr Eye Res. 4, 187-190 (1985).
  29. Ruby, A. J., Williams, G. A., Blumenkranz, M. S. Vitreous humor. Foundations of Clinical Ophthalmology. , (2006).
  30. Jaffe, G. J., Ashton, P., Andrew, P. . Intraocular Drug Delivery. , (2006).
  31. Iyer, M. N., et al. Clearance of intravitreal moxifloxacin. Invest Ophthalmol Vis Sci. 47, 317-319 (2006).
  32. Fauser, S., et al. Pharmacokinetics and safety of intravitreally delivered etanercept. Graefes Arch Clin Exp Ophthalmol. 242, 582-586 (2004).
  33. Scholes, G. N., O’Brien, W. J., Abrams, G. W., Kubicek, M. F. Clearance of triamcinolone from vitreous. Arch Ophthalmol. 103, 1567-1569 (1985).
  34. Stastna, M., Behrens, A., McDonnell, P. J., Van Eyk, J. E. Analysis of protein composition of rabbit aqueous humor following two different cataract surgery incision procedures using 2-DE and LC-MS/MS. Proteome Sci. 9, 8 (2011).
  35. Sinapis, C. I., et al. Pharmacokinetics of intravitreal bevacizumab (Avastin(R)) in rabbits. Clin Ophthalmol. 5, 697-704 (2011).
  36. Gaudreault, J., Fei, D., Rusit, J., Suboc, P., Shiu, V. Preclinical pharmacokinetics of Ranibizumab (rhuFabV2) after a single intravitreal administration. Invest Ophthalmol Vis Sci. 46, 726-733 (2005).
  37. Maurice, D. Review: practical issues in intravitreal drug delivery. J Ocul Pharmacol Ther. 17, 393-401 (2001).
  38. Laude, A., et al. Intravitreal therapy for neovascular age-related macular degeneration and inter-individual variations in vitreous pharmacokinetics. Prog Retin Eye Res. 29, 466-475 (2010).
  39. Christoforidis, J. B., Carlton, M. M., Knopp, M. V., Hinkle, G. H. PET/CT imaging of I-124-radiolabeled bevacizumab and ranibizumab after intravitreal injection in a rabbit model. Invest Ophthalmol Vis Sci. 52, 5899-5903 (2011).
  40. Sangwan, V. S., Pearson, P. A., Paul, H., Comstock, T. L. Use of the Fluocinolone Acetonide Intravitreal Implant for the Treatment of Noninfectious Posterior Uveitis: 3-Year Results of a Randomized Clinical Trial in a Predominantly Asian Population. Ophthalmol Ther. 4, 1-19 (2015).
  41. Bajwa, A., Aziz, K., Foster, C. S. Safety and efficacy of fluocinolone acetonide intravitreal implant (0.59 mg) in birdshot retinochoroidopathy. Retina. 34, 2259-2268 (2014).
  42. Sanford, M. Fluocinolone acetonide intravitreal implant (Iluvien(R)): in diabetic macular oedema. Drugs. 73, 187-193 (2013).
  43. Haller, J. A., et al. Dexamethasone intravitreal implant in patients with macular edema related to branch or central retinal vein occlusion twelve-month study results. Ophthalmology. 118, 2453-2460 (2011).
  44. Boyer, D. S., et al. Three-year, randomized, sham-controlled trial of dexamethasone intravitreal implant in patients with diabetic macular edema. Ophthalmology. 121, 1904-1914 (2014).
  45. Patel, S. R., et al. Targeted administration into the suprachoroidal space using a microneedle for drug delivery to the posterior segment of the eye. Invest Ophthalmol Vis Sci. 53, 4433-4441 (2012).
  46. Makadia, H. K., Siegel, S. J. Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers (Basel). 3, 1377-1397 (2011).
check_url/53878?article_type=t

Play Video

Cite This Article
Ahn, S. J., Hong, H. K., Na, Y. M., Park, S. J., Ahn, J., Oh, J., Chung, J. Y., Park, K. H., Woo, S. J. Use of Rabbit Eyes in Pharmacokinetic Studies of Intraocular Drugs. J. Vis. Exp. (113), e53878, doi:10.3791/53878 (2016).

View Video