Summary

肌丝的Ca评估<sup> 2+</sup>灵敏度潜在心脏兴奋收缩耦联

Published: August 01, 2016
doi:

Summary

This paper describes a protocol that assesses the changes of myofilament Ca2+ sensitivity during contraction in isolated cardiac myocytes from rat heart. Together with cardiac electrophysiology, systolic/diastolic cytosol Ca2+ levels and contraction/relaxation, this measurement is imperative in underpinning the mechanisms mediating cardiac excitation-contraction coupling in healthy and diseased hearts.

Abstract

心脏衰竭和心律失常是全世界发病率和死亡率的主要原因。然而,在患病心脏发病和心肌故障的机制仍有待完全澄清。最近令人信服的证据表明,在肌丝 Ca 2+敏感性的变化会影响细胞内Ca 2+稳态和离子通道活动在心肌细胞,负责在健康和患病心脏心脏动作电位和收缩的主要机制。事实上,潜在的心脏动作电位(如离子 ,钙离子和钾离子通道,钠+ -Ca 2+交换)和细胞内钙离子处理的蛋白质( 例如 ,兰尼碱受体和钙离子通道的活动和运输2+ -ATP酶肌浆网(SERCA2a的)或磷蛋白和磷酸化其)的常规测量evalu吃了心脏兴奋收缩(EC)耦合的基本机制。在细胞膜和细胞内钙离子的变化包括电活动有兴奋收缩耦联的触发信号,而肌丝的收缩和舒张的功能单位,肌丝钙离子敏感性是在肌原纤维性能的实施势在必行。然而,很少有研究纳入肌丝钙离子敏感性到心肌的功能分析,除非它是研究的重点。在这里,我们描述了测量肌缩短/再延长使用的Fura-2 AM(比率检测),并评估肌丝 Ca 2+从大鼠心脏心肌细胞敏感性的变化,细胞内钙离子水平的协议。其主要目的是强调肌丝钙离子敏感性,应考虑到EC联轴器机械分析。我的全面排查对背后的健康和患病心脏肌细胞收缩将提供有价值的信息设计平移和治疗价值的更为有效的战略通道,离子转运,细胞内钙离子处理和肌丝钙离子敏感性。

Introduction

心肌兴奋收缩(EC)耦合是分析心肌, 心脏1,2的收缩功能的机械性能的根本方案。 EC耦合 ​​通过膜去极化继发于细胞膜离子通道的活动发起( 例如,电压门控通道,它可以通过膜片钳技术测量)。电压门控的L型的随后活化的Ca 2+通道(LTCCS)和Ca 经由 LTCCS 2+内流触发散装的Ca 2+通过兰尼碱受体(RyRs的)的释放,从纳摩尔提高胞质Ca 2+浓度(纳米)到微摩尔(μM)的水平。这种增加在细胞内钙离子促进钙离子结合在薄丝肌钙蛋白C(TNC)和抒发灯丝复杂的构象变化,促进肌动球蛋白相互作用和达到myocardi人收缩3。相反,细胞内重新摄取回SR中的肌质网(SR)通过 Ca 2+ -ATP酶(SERCA2a的),或者是通过 / 交换和质膜挤出肌纤维钙离子 ATP酶1,2。因此,在细胞内的Ca的下降2+指使细长丝的构象变化返回到原来的状态,从而导致肌动蛋白-肌球蛋白和肌细胞松弛1-3的解离。在这个方案中,SERCA2a的活性通常被认为是,以确定心肌松弛的速度,因为它占70 -在大多数哺乳动物的心脏细胞1细胞内的Ca 2+去除的90%。正如LTCC,碱受体和SERCA2a的等这样的,不正常的处理一直被认为是受损的收缩和放松患病心脏1-4的主要机制。

<p class="jove_content">在现实中,细胞内游离钙离子 ,其功能如同在EC耦合 ​​账户信使约1%的总细胞内Ca 2+和广大势必细胞内钙离子缓冲5,6。这是由于这样的事实,即各个 Ca 2+缓冲液是在心肌细胞丰富, 例如,膜磷脂,ATP,磷酸,钙调蛋白,小清蛋白,肌原纤维TNC,肌球蛋白,SERCA2a的,并且在对SR肌集钙蛋白。5,6,7。其中,SERCA2a的和跨国公司是主要的缓冲5,6,7。此外,钙离子结合到其缓冲器是抽搐期间一个动态的过程( 例如,2+ 30-50%结合于肌钙蛋白和Ca期间将它解离2+瞬变7)和中 Ca 2+结合的原因的其他变化在细胞内钙的改变游离钙离子的“释放”到细胞质,结果2+浓度entration。因此,细胞内Ca 2+水平的扰动引起异常肌丝的运动,这是收缩功能障碍和心律失常8,9的前体。许多因素(包括生理和病理)可以是肌丝蛋白质的转录后修饰,影响肌丝 Ca 2+缓冲和肌丝 Ca 2+敏感性8-10的来源。最近,据报道,在肌丝蛋白突变增加 Ca 2+结合亲和力和细胞内Ca 2+的处理,触发 Ca 2+瞬变,异常 Ca 2+释放,和心律失常8的暂停依赖性增强。根据这一理念,我们也表现出高血压大鼠心脏继发于神经元型一氧化氮合酶上调的肌丝脱敏与高架舒张和收缩 Ca 2+水平有关11,这又增加了LTCC的对于Ca 2+依赖性失活12的脆弱性。因此,肌丝 Ca 2+敏感性是细胞内Ca 2+稳态和肌细胞收缩功能的“有效的”调节器。它已成为必要分析肌丝和Ca之间的相互作用2+处理的蛋白质为心肌兴奋收缩耦联及心功能的彻底调查。

在这里,我们描述了评估肌丝钙离子敏感性在孤立的心肌细胞变化的协议。细胞内钙离子分布的综合分析,肌丝钙离子敏感性和收缩会发掘新机制基本心肌力学。

Protocol

该协议是按照指南卫生的联合国国家机构发布的实验室动物的护理和使用(NIH出版号85-23,1996年修订)。它是经首尔国立大学的机构动物护理和使用委员会(IACUC)(IACUC批准号:SNU-101213-1)。 1.缓冲液配制(表材料和设备) 制备300毫升新鲜分离溶液对实验当天(以mM:氯化钠,135;氯化钾,5.4; MgCl 2的,3.5;葡萄糖,5; HEPES,5; 的 Na 2 HPO 4,0….

Representative Results

LV肌细胞正常和高血压大鼠心脏分离。有明确的条纹(代表肌节),并稳定收缩响应于场刺激棒状细胞被认为是最佳的细胞和被选择用于记录( 图2A)。在F中igure 2A所示的例子中,一个的Fura上午02点-loaded左心室心肌细胞水平定位并调节摄像机的光圈,使心肌细胞占据了大部分的记录区和最小的背景区域被包括在内。在录制现场,通过点击和拖动?…

Discussion

这里,我们描述了协议,以评估肌丝 Ca 2+在单个孤立心肌细胞的敏感性的变化,并强调测定该参数一起电生理特性,细胞内Ca 2+瞬变,和肌丝动力学的重要性。这是因为一个或两个参数的记录可能没有阐明心脏收缩和舒张的基本机制。不同于测量肌细胞收缩和细胞内Ca 2+信息单独1的常规方法,本方法检查这两个参数在相同的心肌细胞同时 <…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项研究是由基础科学研究计划通过教育,科学与技术部(2013068067)资助的韩国国家研究基金会(NRF)的支持;由教育部,科技部,首尔国立大学医院,高血压的韩国社会(2013年),SK电信研究基金的韩国部脑韩国21毕业生计划(编号3420130290)和中国国家自然科学基金(NSFC 31460265;国家自然科学基金81260035)。

Materials

Sprague Dawley rat Koatech 8-12 weeks
Pentobarbital Sodium Hanlim Pharmaceutical (Korea) AHN901 Insurance code:645301220
NaCl Sigma S9625
KCl Sigma P4504
NaH2PO4 Sigma S8282
HEPES Sigma H3375
Glucose Sigma G8270
CaCl2 Biosesang C2002
MgCl2 Biosesang M2001
Mannitol Sigma M4125
MgSO4 Sigma M5921
Sodium Pyruvate Sigma P2256
Taurine Merck 8.08616.1000
Na2HPO Sigma 71649
Bovine Fetal Albumin Sigma A7906
Collagenase Type 2 Worthington LS004177
Protease Sigma P6911
Fura-2 (AM) Molecular Probes F1221
Pluronic F127 20% solution in DMSO Invitrogen P3000MP
Shaking Water Bath Chang Shin Scientific Model: C-108
IonWizard Softwae Suite IonOptix Ltd Experimental Builder Acquisition and Analysis of EC Coupling Data in Myocytes
Myocyte Calcium & Contractility Recording System IonOptix Ltd
Circulating Water Bath BS-Tech BW2-8
Myocyte Fluorescence Microscope Nikon DIATPHOTO 200
MyoCam-S Power IonOptix
Fluorescence & Video Detection IonOptix MyoCam-S
CFA300
PMT400
Fluorescence & System Interface IonOptix FSI700
Excitation Light Source IonOptix mSTEP
High intensity ARC Lamp Power supply Cairn Reseach
Filter wheel controller IonOptix GB/MUS200
Digital Stimulator Medical Systems Corportion S-98 Mutimode
Compositions of Experimental Solutions
Name Company Catalog Number Comments
Isolation Solution (pH: 7.4, NaOH)
NaCl Sigma S9625 Concentration (mmol) 135
KCl Sigma P4504 Concentration (mmol) 5.4
HEPES Sigma H3375 Concentration (mmol) 5
Glucose Sigma G8270 Concentration (mmol) 5
MgCl2 Biosesang M2001 Concentration (mmol) 3.5
Taurine Sigma CB2742654 Concentration (mmol) 20
Na2HPO Sigma 71649 Concentration (mmol) 0.4
Storage Solution (pH: 7.4, NaOH)
NaCl Sigma S9625 Concentration (mmol) 120
KCl Sigma P4504 Concentration (mmol) 5.4
HEPES Sigma H3375 Concentration (mmol) 10
Glucose Sigma G8270 Concentration (mmol) 5.5
CaCl2 Biosesang C2002 Concentration (mmol) 0.2
Mannitol Sigma M4125 Concentration (mmol) 29
MgSO4 Sigma M5921 Concentration (mmol) 5
Sodium Pyruvate Sigma P2256 Concentration (mmol) 5
Taurine Sigma CB2742654 Concentration (mmol) 20
Perfusion Solution (Tyrode solution, pH: 7.4, NaOH)
NaCl Sigma S9625 Concentration (mmol) 141.4
KCl Sigma P4504 Concentration (mmol) 4
NaH2PO4 Sigma S8282 Concentration (mmol) 0.33
HEPES Sigma H3375 Concentration (mmol) 10
Glucose Sigma G8270 Concentration (mmol) 5.5
CaCl2 Biosesang C2002 Concentration (mmol) 1.8      For Fura 2AM loading, CaCl2 concentrations are 0.25 mM and 0.5 mM
MgCl2 Biosesang M2001 Concentration (mmol) 1
Mannitol Sigma M4125 Concentration (mmol) 14.5
Collangenase Solution 1
Isolation Solution (30mL)
Bovine Fetal Albumin (BSA solution 5 ml) Concentration (mmol) 1.67 mg/mL
Collagenase Type 2 Worthington LS004177 Concentration (mmol) 1 mg/mL
Protease Sigma P6911 Concentration (mmol) 0.1 mg/mL
CaCl2 Biosesang C2002 Concentration (mmol) 0.05 mM
Collangenase Solution 2
Isolation Solution (20mL)
Bovine Fetal Albumin (BSA solution 3.3 mL) Concentration (mmol) 1.67 mg/mL
Collagenase Type 2 Worthington LS004177 Concentration (mmol) 1 mg/mL
CaCl2 Biosesang C2002 Concentration (mmol) 0.05 mM
BSA solution
Isolation Solution (40mL)
Bovine Fetal Albumin Sigma A7906 Concentration (mmol) 400 mg
CaCl2 Biosesang C2002 Concentration (mmol) 1mM

References

  1. Bers, D. M., et al. Cardiac excitation-contraction coupling. Nature. 415 (6868), 198-205 (2002).
  2. Eisner, D. A., et al. Integrative analysis of calcium cycling in cardiac muscle. Circ Res. 87 (12), 1087-1094 (2000).
  3. Palmiter, K. A., et al. Molecular mechanisms regulating the myofilament response to Ca2+: implications of mutations causal for familial hypertrophic cardiomyopathy. Basic Res Cardiol. 92 (S1), 63-74 (1997).
  4. Missiaen, L., et al. Abnormal intracellular Ca2+ homeostasis and disease. Cell Calcium. 28 (1), 1-21 (2000).
  5. Trafford, A. W., et al. A novel, rapid and reversible method to measure Ca buffering and time-course of total sarcoplasmic reticulum Ca content in cardiac ventricular myocytes. Pflugers Arch. 437 (3), 501-503 (1999).
  6. Berlin, J. R., et al. Intrinsic cytosolic calcium buffering properties of single rat cardiac myocytes. Biophys J. 67 (4), 1775-1787 (1994).
  7. Robertson, S. P., et al. The time-course of Ca2+ exchange with calmodulin, troponin, parvalbumin, and myosin in response to transient increases in Ca2+. Biophys J. 34 (3), 559-569 (1981).
  8. Schober, T., et al. Myofilament Ca2+ sensitization increases cytosolic Ca2+ binding affinity, alters intracellular Ca2+ homeostasis, and causes pause-dependent Ca2+-triggered arrhythmia. Circ Res. 112 (2), 170-179 (2012).
  9. Briston, S. J., et al. Balanced changes in Ca buffering by SERCA and troponin contribute to Ca handling during β-adrenergic stimulation in cardiac myocytes. Cardiovasc Res. 104 (2), 347-354 (2014).
  10. Patel, B. G., Wilder, T., John Solaro, R. J., et al. Novel control of cardiac myofilament response to calcium by S-glutathionylation at specific sites of myosin binding protein C. Front Physiol. 4, 336 (2013).
  11. Jin, C. Z., et al. Myofilament Ca2+ desensitization mediates positive lusitropic effect of neuronal nitric oxide synthase in left ventricular myocytes from murine hypertensive heart. J Mol Cell Cardiol. 60, 107-115 (2013).
  12. Wang, Y., et al. Modulation of L-type Ca2+ channel activity by neuronal nitric oxide synthase and myofilament Ca2+ sensitivity in cardiac myocytes from hypertensive rat. Cell Calcium. 58 (3), 264-274 (2015).
  13. Louch, W. E., Sheehan, K. A., Wolska, B. M., et al. Methods in cardiomyocyte isolation, culture, and gene transfer. J Mol Cell Cardiol. 51 (3), 288-298 (2011).
  14. Spurgeon, H. A., et al. Cytosolic calcium and myofilaments in single rat cardiac myocytes achieve a dynamic equilibrium during twitch relaxation. J Physiol. 447, 83-102 (1992).
  15. Preston, L. C., et al. Functional effects of the DCM mutant Gly159Asp troponin C in skinned muscle fibres. Pflugers Arch. 453 (6), 771-776 (2007).
  16. Willott, R. H., et al. Mutations in Troponin that cause HCM, DCM AND RCM: what can we learn about thin filament function?. J Mol Cell Cardiol. 48 (5), 882-892 (2010).
  17. Yasuda, S. I., et al. A novel method to study contraction characteristics of a single cardiac myocyte using carbon fibers. Am J Physiol Heart Circ Physiol. 281 (3), H1442-H1446 (2001).
  18. Sears, C. E., et al. Cardiac neuronal nitric oxide synthase isoform regulates myocardial contraction and calcium handling. Circ Res. 92 (5), e52-e59 (2003).
  19. Ashley, E. A., et al. Cardiac nitric oxide synthase 1 regulates basal and beta-adrenergic contractility in murine ventricular myocytes. Circulation. 105 (25), 3011-3016 (2002).
  20. Zhang, Y. H., et al. Reduced phospholamban phosphorylation is associated with impaired relaxation in left ventricular myocytes from neuronal NO synthase-deficient mice. Circ Res. 102 (2), 242-249 (2008).
  21. Roe, M. W., Lemasters, J. J., Herman, B., et al. Assessment of Fura-2 for measurements of cytosolic free calcium. Cell Calcium. 11 (2-3), 63-73 (1990).
  22. Grynkiewicz, G., et al. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 260 (6), 3440-3450 (1985).
check_url/54057?article_type=t

Play Video

Cite This Article
Zhao, Z. H., Jin, C. L., Jang, J. H., Wu, Y. N., Kim, S. J., Jin, H. H., Cui, L., Zhang, Y. H. Assessment of Myofilament Ca2+ Sensitivity Underlying Cardiac Excitation-contraction Coupling. J. Vis. Exp. (114), e54057, doi:10.3791/54057 (2016).

View Video