Summary

Kontinuerlig IV Infusion er valg Behandling Route for Arginin-vasopressin receptor Blocker Conivaptan i mus for at studere Stroke-fremkaldt hjerneødem

Published: September 01, 2016
doi:

Summary

Our studies have revealed that the beneficial effects of conivaptan are dependent on the method of delivery after experimental stroke in mice. We have developed a research protocol for delivery of the receptor blocker via IV catheter on stroke-evoked brain edema formation in mice.

Abstract

Slagtilfælde er en af ​​de hyppigste årsager til sygelighed og dødelighed i verden. Slagtilfælde kompliceres af hjerneødem og andre patofysiologiske begivenheder. Blandt de vigtigste spillere i udvikling og videreudvikling af slagtilfælde-fremkaldte hjerneødem er det hormon arginin-vasopressin og dets receptorer, V1a og V2. For nylig har V1a og V2-receptor blocker conivaptan tiltrukket opmærksomhed som et potentielt lægemiddel til at reducere hjerneødem efter slagtilfælde. Men dyremodeller, som involverer conivaptan applikationer i slagtilfælde forskning skal ændres på grundlag af mulige administrationsveje,. Her resultaterne af 48 timers kontinuerlig intravenøs (IV) sammenlignes med intraperitoneal (IP) conivaptan behandlinger efter eksperimentel slagtilfælde hos mus. Vi udviklede en protokol, hvor mellem-cerebral arterieokklusion blev kombineret med kateter installation i halsvenen til intravenøs behandling af conivaptan (0,2 mg) eller vehikel. Forskellige kohorter af dyr blev behandlet med 0,2mg bolus af conivaptan eller køretøj IP dagligt. Eksperimentel slagtilfælde fremkaldte hjerneødem blev evalueret i mus efter kontinuerlig IV og IP-behandlinger. Sammenligning af resultaterne viste, at kontinuerlig intravenøs administration af conivaptan letter post-iskæmisk hjerneødem i mus, i modsætning til IP administration af conivaptan. Vi konkluderer, at vores model kan anvendes til fremtidige studier af conivaptan applikationer i forbindelse med slagtilfælde og hjerneødem.

Introduction

Stroke continues to be an enormous burden for patients and clinicians. Animal stroke models have been used in the laboratory setting for nearly two decades.1 Nevertheless, experimental treatments that work in animals often fail in humans.2 This discrepancy in treatment outcomes may be due to various factors, such as administration routes for drugs used in animal research, drug metabolism and elimination rate, and many other aspects. One of the major complications of stroke, brain edema, is a focus of current research in neuroscience. Mechanisms of brain edema formation involve disturbances in water and electrolyte balance triggered by the arginine-vasopressin (AVP) response to ischemic brain injury.3 Therefore, AVP and its receptors (V1a and V2) are a major focus of research studies of post-ischemic brain edema formation.3

We have developed a methodology to study the effects of mixed arginine-vasopressin (V1a and V2) receptor blocker conivaptan on post-ischemic brain edema in mice.4 Molecular targets of conivaptan5 make the drug a suitable candidate for exploration of its properties in alleviation of brain edema. Furthermore, conivaptan needs to be studied in the context of pathophysiological events of stroke.6 In designing this study, we considered comparing treatment outcomes using two different routes of administration for conivaptan: intravenous (IV)4 and intraperitoneal (IP).7 Effects of the treatments on stroke-induced brain edema were evaluated. Here detailed protocols are described for surgical induction of experimental stroke by middle cerebral artery occlusion (MCAO), and followed by continuous conivaptan treatment using the installation of a jugular IV catheter. After induction of stroke, animals were randomly allocated into the following groups: vehicle or conivaptan (0.2 mg/day) treated IV or IP.

Protocol

Eksperimenter blev udført i overensstemmelse med retningslinjerne fra National Institutes of Health for pasning og anvendelse af dyr i forskning og blev godkendt af det svenske Medical Center Animal Care og brug Udvalg. Alle procedurer blev udført med passende aseptisk teknik. Forsøgsdyr anvendes til undersøgelsen var mænd, 3 måneder gammel, vildtype C57 mus med kropsvægt den 25.-27 g. 1. In Vivo Stroke Induktion Pre-coat glødetråden med Dental Resin før operati…

Representative Results

Kropstemperatur dyrene var inden for det fysiologiske område og stabil i den kirurgiske procedure for slagtilfælde induktion. To mus der udviste NDS lavere end 2 umiddelbart efter MCAO blev udelukket fra undersøgelsen. MCAO i mus producerer infarktvolumen i den ipsilaterale hemisfære ved 48 timer. Evaluering af TTC-farvede skiver viser, at ca. 50% af halvkuglen påvirkes af infarkt efter MCAO (figur 1 D), …

Discussion

Denne undersøgelse har vigtig værdi for præklinisk slagtilfælde forskning. Denne undersøgelse viser, at kontinuerlig intravenøs infusion af conivaptan (0,2 mg / dag) efter eksperimentel slagtilfælde hos mus effektivt reducerer hjerneødem efter 48 timers behandling. Virkningen af ​​IP-injektion af den samme dosis af conivaptan på hjerneødem blev også undersøgt. Conivaptan behandling af både IV og IP ruter producerer aquaresis i mus som angivet ved: 1) stigning i plasma osmolalitet lidt over fysiologiske …

Disclosures

The authors have nothing to disclose.

Acknowledgements

Vi takker Swedish Medical Center for at levere finansiering og faciliteter. Vi takker også Craig Hospital for den generøse brug af laboratorie plads.

Materials

Heated Pad K&H Manufacturing Inc 1060
Temperature Monitor with Rectal Probe Physitemp 7029
Silk Suture Spool, 6-0 Surgical Specialties Corporation SP114
Silk Suture on a Needle, 3-0 Ethicon 1684G
Nylon Suture, 7-0 Ethicon 1696G
Dental Resin Polysiloxane with Hardener Heraeus Kulzer 65817930
Microinfusion IV Pump Kent Scietific GT0897
Swivel 22GA Instech 375/22PS
Laboratory Tubing, 0.94 x 0.51 mm Dow Corning 508-002
Laboratory Tubing, 3.18 x 1.98 mm Dow Corning 508-009

References

  1. Gueniau, C., Oberlander, C. The kappa opioid agonist niravoline decreases brain edema in the mouse middle cerebral artery occlusion model of stroke. J Pharmacol Exp Ther. 282, 1-6 (1997).
  2. Krafft, P. R., et al. Etiology of stroke and choice of models. Int J Stroke. 7, 398-406 (2012).
  3. Vakili, A., Kataoka, H., Plesnila, N. Role of arginine vasopressin V1 and V2 receptors for brain damage after transient focal cerebral ischemia. J Cereb Blood Flow Metab. 25, 1012-1019 (2005).
  4. Zeynalov, E., Jones, S. M., Seo, J. W., Snell, L. D., Elliott, J. P. Arginine-Vasopressin Receptor Blocker Conivaptan Reduces Brain Edema and Blood-Brain Barrier Disruption after Experimental Stroke in Mice. PloS one. 10, e0136121 (2015).
  5. Med Lett Drugs Ther.. Conivaptan (Vaprisol) for hyponatremia. The Medical letter on drugs and therapeutics. 48, 51-52 (2006).
  6. Zhao, X. Y., et al. Effect of arginine vasopressin on the cortex edema in the ischemic stroke of Mongolian gerbils. Neuropeptides. 51, 55-62 (2015).
  7. Manaenko, A., Chen, H., Kammer, J., Zhang, J. H., Tang, J. Comparison Evans Blue injection routes: Intravenous versus intraperitoneal, for measurement of blood-brain barrier in a mice hemorrhage model. J Neurosci Methods. 195, 206-210 (2011).
  8. Adams, S., Pacharinsak, C. Mouse anesthesia and analgesia. Curr Protoc Mouse Biol. 5, 51-63 (2015).
  9. Zeynalov, E., et al. The perivascular pool of aquaporin-4 mediates the effect of osmotherapy in postischemic cerebral edema. Crit Care Med. 36, 2634-2640 (2008).
  10. Zeynalov, E., Dore, S. Low doses of carbon monoxide protect against experimental focal brain ischemia. Neurotox Res. 15, 133-137 (2009).
  11. Zeynalov, E., Nemoto, M., Hurn, P. D., Koehler, R. C., Bhardwaj, A. Neuroprotective effect of selective kappa opioid receptor agonist is gender specific and linked to reduced neuronal nitric oxide. J Cereb Blood Flow Metab. 26, 414-420 (2006).
  12. Ma, M. C., Qian, H., Ghassemi, F., Zhao, P., Xia, Y. Oxygen-sensitive {delta}-opioid receptor-regulated survival and death signals: novel insights into neuronal preconditioning and protection. J Biol Chem. 280, 16208-16218 (2005).
  13. Ahmad, M., Zhang, Y., Liu, H., Rose, M. E., Graham, S. H. Prolonged opportunity for neuroprotection in experimental stroke with selective blockade of cyclooxygenase-2 activity. Brain Res. 1279, 168-173 (2009).
  14. Meisel, C., et al. Preventive antibacterial treatment improves the general medical and neurological outcome in a mouse model of stroke. Stroke. 35, 2-6 (2004).
  15. Miner, N. A., Koehler, J., Greenaway, L. Intraperitoneal injection of mice. Appl Microbiol. 17, 250-251 (1969).
  16. Adis International Limited. Conivaptan: YM 087. Drugs in R&D. 5, 94-97 (2004).
  17. Murphy, T., Dhar, R., Diringer, M. Conivaptan bolus dosing for the correction of hyponatremia in the neurointensive care unit. Neurocrit Care. 11, 14-19 (2009).
  18. Liu, X., Nakayama, S., Amiry-Moghaddam, M., Ottersen, O. P., Bhardwaj, A. Arginine-vasopressin V1 but not V2 receptor antagonism modulates infarct volume, brain water content, and aquaporin-4 expression following experimental stroke. Neurocrit Care. 12, 124-131 (2010).
  19. Wallace, B. K., Jelks, K. A., O’Donnell, M. E. Ischemia-induced stimulation of cerebral microvascular endothelial cell Na-K-Cl cotransport involves p38 and JNK MAP kinases. Am J Physiol Cell Physiol. 302, C505-C517 (2012).
  20. O’Donnell, M. E., et al. Intravenous HOE-642 reduces brain edema and Na uptake in the rat permanent middle cerebral artery occlusion model of stroke: evidence for participation of the blood-brain barrier Na/H exchanger. J Cereb Blood Flow Metab. 33, 225-234 (2013).
  21. Walcott, B. P., Kahle, K. T., Simard, J. M. Novel treatment targets for cerebral edema. Neurotherapeutics. 9, 65-72 (2012).
  22. Shen, Z., et al. Inhibition of G protein-coupled receptor 81 (GPR81) protects against ischemic brain injury. CNS Neurosci Ther. 21, 271-279 (2015).
check_url/54170?article_type=t

Play Video

Cite This Article
Zeynalov, E., Jones, S. M., Elliott, J. P. Continuous IV Infusion is the Choice Treatment Route for Arginine-vasopressin Receptor Blocker Conivaptan in Mice to Study Stroke-evoked Brain Edema. J. Vis. Exp. (115), e54170, doi:10.3791/54170 (2016).

View Video