Summary

ऑन लाइन नाइट्रोजन का विश्लेषण परिसर हाइड्रोकार्बन matrixes में यौगिकों से युक्त

Published: August 05, 2016
doi:

Summary

नाइट्रोजन chemiluminescence पता लगाने के साथ व्यापक दो आयामी गैस क्रोमैटोग्राफी के संयोजन एक विधि विकसित की है और एक जटिल हाइड्रोकार्बन मैट्रिक्स में नाइट्रोजन युक्त यौगिकों की ऑन लाइन विश्लेषण करने के लिए लागू किया गया है।

Abstract

भारी कच्चे तेलों को पारी और इस तरह के शेल तेल के रूप में वैकल्पिक जीवाश्म संसाधनों के उपयोग पेट्रो रसायन उद्योग के लिए एक चुनौती है। भारी कच्चे तेल और शेल तेल की संरचना काफी हद तक मिश्रण के मूल पर निर्भर करता है। विशेष रूप से वे पारंपरिक प्रयोग स्वीट कच्चे तेल की तुलना में यौगिकों से युक्त नाइट्रोजन की एक वृद्धि की मात्रा में होते हैं। नाइट्रोजन यौगिकों कोकर इकाइयों और भाप पटाखे में होने वाली थर्मल प्रक्रियाओं के संचालन पर एक प्रभाव है, और जैसा कि कुछ प्रजातियों के रूप में पर्यावरण की दृष्टि से खतरनाक माना जाता है, pyrolysis की शर्तों के तहत नाइट्रोजन युक्त यौगिकों को शामिल प्रतिक्रियाओं की एक विस्तृत विश्लेषण के लिए बहुमूल्य जानकारी प्रदान करता है। इसलिए एक उपन्यास विधि विकसित की है और एक फीडस्टॉक एक उच्च नाइट्रोजन सामग्री, यानी, एक प्रकार की शीस्ट तेल युक्त के साथ मान्य किया गया है। सबसे पहले, चारा व्यापक दो आयामी गैस क्रोमैटोग्राफी (जीसी × जीसी) एक nitr के साथ मिलकर द्वारा ऑफ़लाइन विशेषता थीogen chemiluminescence डिटेक्टर (एनसीडी)। दूसरे चरण में ऑन लाइन विश्लेषण विधि विकसित की है और हेपटैन में भंग पिरिडीन खिलाने से एक भाप खुर पायलट संयंत्र पर परीक्षण किया गया था। पूर्व शेल तेल में मौजूद यौगिकों का सबसे प्रचुर वर्गों में से एक के लिए एक प्रतिनिधि यौगिक जा रहा है। रिएक्टर प्रवाह की संरचना खूंटी एक घर में विकसित स्वचालित प्रणाली नमूना एक समय की उड़ान मास स्पेक्ट्रोमीटर (TOF एमएस), ज्योति आयनीकरण डिटेक्टर के साथ मिलकर जीसी × एक जीसी पर नमूने के तत्काल इंजेक्शन द्वारा पीछा के माध्यम से निर्धारित किया गया था ( ) और एनसीडी। यौगिकों एक आंतरिक मानक के रूप में एनसीडी और 2-chloropyridine का उपयोग कर युक्त नाइट्रोजन के मात्रात्मक विश्लेषण के लिए एक उपन्यास विधि विकसित की है और प्रदर्शन किया गया है।

Introduction

लाइट स्वीट कच्चे तेल का भंडार धीरे-धीरे कम हो रहे हैं, और इसलिए, वैकल्पिक ऊर्जा संसाधनों के जीवाश्म और पेट्रो रसायन उद्योग में इस्तेमाल किया जा करने के लिए माना जा रहा है। इसके अलावा, इस तरह के जैव तेल बायोमास की तेजी pyrolysis द्वारा उत्पादित के रूप में नवीकरणीय ऊर्जा आधारित जैव ईंधन और रसायनों का एक और अधिक आकर्षक संसाधनों होते जा रहे हैं। फिर भी, भारी कच्चे तेल क्योंकि कनाडा और वेनेजुएला में 1-3 बड़े भंडार का एक तार्किक पहली पसंद है। उत्तरार्द्ध दुनिया में सबसे बड़ा कच्चे तेल का भंडार के रूप में पहचाना जा रहा है और उनकी संरचना प्राकृतिक कोलतार की रचना करने के लिए इसी तरह की है। जैव तेल के लिए इसी प्रकार, भारी कच्चे तेल जलाशय तापमान, उच्च घनत्व (कम एपीआई गुरुत्वाकर्षण), और नाइट्रोजन, ऑक्सीजन की महत्वपूर्ण सामग्री, और सल्फर युक्त यौगिकों 4,5 पर अपने उच्च चिपचिपाहट से प्रकाश कच्चे तेल से भिन्न होते हैं। एक और होनहार विकल्प शेल तेल, तेल शेल से प्राप्त होता है। तेल शीस्ट एक सुक्ष्म तलछटी चट्टानों चोर हैtaining kerogen, के रूप में 1,000 दा 6 के रूप में उच्च एक दाढ़ जन के साथ जैविक रासायनिक यौगिकों का एक मिश्रण। Kerogen जैविक ऑक्सीजन, नाइट्रोजन, सल्फर और हाइड्रोकार्बन मैट्रिक्स में शामिल कर सकते हैं; मूल, आयु, और निकासी की स्थिति पर निर्भर करता है। वैश्विक लक्षण वर्णन तरीकों से पता चला है कि heteroatoms (एस, हे और एन) शेल तेल और भारी कच्चे तेल में की एकाग्रता आम तौर पर काफी हद तक विनिर्देशों उदाहरण पेट्रो रसायन उद्योग के लिए 6 में इस्तेमाल किया उत्पादों के लिए निर्धारित से अधिक है। यह अच्छी तरह से प्रलेखित है भारी पारंपरिक कच्चे तेल और शेल तेल में मौजूद नाइट्रोजन युक्त यौगिकों हाइड्रोक्रैकिंग, उत्प्रेरक खुर और सुधार प्रक्रियाओं 7 में उत्प्रेरक गतिविधि पर एक नकारात्मक प्रभाव है। इसी प्रकार, यह बताया गया है कि नाइट्रोजन युक्त यौगिकों की उपस्थिति एक सुरक्षा चिंता का विषय है क्योंकि वे एक भाप पटाखा 8 की ठंड बॉक्स में गम गठन को बढ़ावा देने रहे हैं।

ये प्रसंस्करण और सुरक्षा challenges बंद लाइन के लिए और ऑन लाइन जटिल हाइड्रोकार्बन matrices में यौगिकों से युक्त नाइट्रोजन के लक्षण वर्णन के मौजूदा तरीकों में सुधार करने के लिए एक मजबूत ड्राइवर हैं। दो आयामी गैस क्रोमैटोग्राफी (जीसी × जीसी) एक नाइट्रोजन chemiluminescence डिटेक्टर (एनसीडी) के साथ मिलकर पारंपरिक डीजल या तरलीकृत कोयले के नमूने 7 विश्लेषण करने के लिए एक आयामी गैस क्रोमैटोग्राफी (जीसी) की तुलना में एक बेहतर लक्षण वर्णन तकनीक है। , मध्य डिस्टिलेट्स 9 में मौजूद निकाले नाइट्रोजन यौगिकों की पहचान है, और प्लास्टिक अपशिष्ट pyrolysis तेल 10 की विस्तृत संरचना के निर्धारण हाल ही में एक विधि विकसित किया गया है और शेल तेल 6 में नाइट्रोजन सामग्री के ऑफ़लाइन लक्षण वर्णन करने के लिए आवेदन किया।

इस प्रकार यह स्पष्ट है कि जीसी विश्लेषण × जीसी जटिल मिश्रण 11-17 का विश्लेषण करने के लिए एक शक्तिशाली ऑफ़लाइन प्रसंस्करण तकनीक है। हालांकि, ऑन लाइन आवेदन एक विश्वसनीय एक के लिए आवश्यकता के कारण अधिक चुनौतीपूर्ण हैएन डी गैर-भेदभाव नमूना पद्धति। व्यापक ऑन-लाइन लक्षण वर्णन के लिए पहली बार विकसित तरीकों में से एक भाप खुर रिएक्टर एक TOF एमएस और एक खूंटी 18 का उपयोग कर अपशिष्ट का विश्लेषण करके प्रदर्शन किया गया। जीसी सेटिंग्स के अनुकूलन और एक उचित स्तंभ संयोजन सक्षम polyaromatic हाइड्रोकार्बन (PAHS) से 18 मीथेन से लेकर हाइड्रोकार्बन से मिलकर नमूनों का विश्लेषण। वर्तमान कार्य की पहचान और जटिल हाइड्रोकार्बन के मिश्रण में मौजूद नाइट्रोजन यौगिकों की मात्रा का ठहराव के लिए इसे विस्तार करके एक नए स्तर पर इस विधि से लेता है। इस तरह की एक विधि भूमिका इन यौगिकों कई प्रक्रियाओं और अनुप्रयोगों में खेलने की बुनियादी समझ में सुधार की जरूरत दूसरों के बीच में है। 'लेखक सबसे अच्छा ज्ञान के लिए, नाइट्रोजन युक्त यौगिकों के रूपांतरण की प्रक्रिया के कैनेटीक्स के विषय में जानकारी दुर्लभ 19, आंशिक रूप से एक पर्याप्त विधि की कमी के कारण की पहचान करने और नाइट्रोजन युक्त यौगिक यों तो हैरिएक्टर प्रवाह में है। ऑफ़लाइन के लिए और ऑन लाइन विश्लेषण पद्धति की स्थापना इस प्रकार एक शर्त से पहले एक भी फीडस्टॉक पुनर्निर्माण 20-27 और गतिज मॉडलिंग का प्रयास कर सकते है। खेतों जो सटीक पहचान और नाइट्रोजन युक्त यौगिकों की मात्रा का ठहराव से लाभ होगा में से एक भाप खुर या pyrolysis है। जैव और भारी जीवाश्म के लिए भाप खुर या pyrolysis रिएक्टरों हाइड्रोकार्बन और यौगिकों कि heteroatoms शामिल के हजारों शामिल खिलाती है। इसके अलावा, दूध की ​​जटिलता और होने वाली रसायन विज्ञान के कट्टरपंथी प्रकृति के कारण, प्रतिक्रियाओं के दस हजार हजारों मुफ्त कट्टरपंथी प्रजातियों 28 है, जो भी सामग्री शुरू की तुलना में अधिक जटिल रिएक्टर प्रवाह बना देता है के बीच हो सकता है।

हाइड्रोकार्बन मिश्रण में नाइट्रोजन मुख्य रूप से खुशबूदार संरचनाओं, जैसे, पिरिडीन या pyrrole के रूप में मौजूद है, इसलिए सबसे प्रयोगात्मक प्रयासों इन संरचना के अपघटन करने के लिए समर्पित किया गया हैures। हाइड्रोजन साइनाइड और ethyne के 1,148-1,323 ऐसे aromatics और nonvolatile Tars के रूप में लालकृष्ण अन्य उत्पादों को एक तापमान रेंज में अध्ययन किया पिरिडीन के थर्मल अपघटन भी मामूली मात्रा 29 में पाया गया के लिए प्रमुख उत्पादों के रूप में सूचित किया गया। pyrrole के थर्मल अपघटन सदमे की लहर प्रयोगों का उपयोग कर 1,050-1,450 कश्मीर का एक व्यापक तापमान रेंज में जांच की गई। मुख्य उत्पादों 3-butenenitrile, सीआईएस और ट्रांस 2-butenenitrile, हाइड्रोजन साइनाइड, acetonitrile, 2-propenenitrile, propanenitrile, और propiolonitrile 30 थे। इसके अतिरिक्त थर्मल अपघटन झटका ट्यूब प्रयोगों ऊंचा तुलनीय उत्पाद स्पेक्ट्रा 31,32, जिसके परिणामस्वरूप तापमान पर पिरिडीन के लिए प्रदर्शन किया गया। इन अध्ययनों में उत्पाद की पैदावार जीसी के एक खूंटी से लैस, एक नाइट्रोजन फास्फोरस डिटेक्टर (NPD), 31, एक मास स्पेक्ट्रोमीटर (एमएस) 32 और एक फूरियर अवरक्त (FTIR) स्पेक्ट्रोमीटर 32 को लागू करने से निर्धारित किया गया है </sup>। इसी तरह की कार्यप्रणाली खूंटी और NPD को लागू करने के लिए एक सतत प्रवाह रिएक्टर 8 में शेल तेल pyrolysis उत्पादों का विश्लेषण करने के लिए लागू किया गया था। 273.15 कश्मीर में एक ठंड जाल का प्रयोग और जीसी एमएस, विंकलर एट अल। 33 से पता चला कि पिरिडीन pyrolysis दौरान heteroatom युक्त सुरभित यौगिकों का गठन कर रहे हैं। झांग एट अल। 34 और Debono एट अल। 35 जैविक कचरे के pyrolysis के अध्ययन के लिए विंकलर एट अल की विधि लागू होता है।। नाइट्रोजन अमीर प्रतिक्रिया उत्पादों पर लाइन विश्लेषण किया गया, एक जीसी एक थर्मल चालकता डिटेक्टर (टीसीडी) 34 के लिए युग्मित का उपयोग कर। एकत्र Tars ऑफ़लाइन विश्लेषण किया गया जीसी एमएस 34,35 का उपयोग कर। टोल्यूनि और पिरिडीन का एक साथ pyrolysis पिरिडीन pyrolysis की तुलना में कालिख गठन की प्रवृत्ति में एक अंतर दिखाया है, मुक्त कट्टरपंथी प्रतिक्रियाओं 31,36 के जटिल प्रकृति का संकेत है।

सबसे व्यापक विश्लेषणात्मक तरीकों में से एक एन द्वारा विकसित किया गया थाATHAN और सह कार्यकर्ता 37। वे मुक्त कट्टरपंथी प्रजातियों पता लगाने के लिए पिरिडीन और diazine और इलेक्ट्रॉन समचुंबक प्रतिध्वनि (EPR) स्पेक्ट्रोस्कोपी के अपघटन उत्पादों विश्लेषण करने के लिए FTIR, परमाणु चुंबकीय अनुनाद (एनएमआर) और जीसी एमएस इस्तेमाल किया। FTIR विश्लेषण उत्पादों की एक बड़ी रेंज की पहचान के लिए एक बहुत प्रभावी तरीका है, यहां तक PAHs 38-40 हो सकता है, फिर भी मात्रा का ठहराव बेहद चुनौतीपूर्ण है। कैलिब्रेशन एक विशिष्ट तापमान और दबाव 41 में प्रत्येक लक्ष्य प्रजातियों के लिए अलग सांद्रता में अवरक्त स्पेक्ट्रा का एक पूरा सेट की आवश्यकता है। हांग एट अल। की हाल ही में काम pyrrole और पिरिडीन अपघटन 42,43 दौरान आणविक बीम मास स्पेक्ट्रोमेट्री (MBMS) और उत्पादों और मध्यवर्ती के निर्धारण के लिए ट्यून करने योग्य सिंक्रोटॉन वैक्यूम पराबैंगनी photoionization का उपयोग करने की संभावनाओं का प्रदर्शन किया। इस प्रयोगात्मक विधि समाजिक मध्यवर्ती और संसाधनों के बिना कण के पास सीमा का पता लगाने के चुनिंदा पहचान में सक्षम बनाता हैविश्लेषण किया प्रजातियों 44 के विखंडन licting। हालांकि, MBMS विश्लेषण का उपयोग करके मापा सांद्रता पर अनिश्चितता भी पर्याप्त है।

इस काम में, जटिल शेल तेल की पहली ऑफ़लाइन व्यापक लक्षण वर्णन परिणाम की सूचना दी जाती है। इसके बाद, एक जटिल हाइड्रोकार्बन मैट्रिक्स में नाइट्रोजन यौगिकों के विश्लेषण के लिए × जीसी TOF एमएस / खूंटी पर एक लाइन का उपयोग कर जीसी की सीमाओं पर विचार-विमर्श कर रहे हैं। अंत में, × जीसी एनसीडी जीसी द्वारा यौगिकों से युक्त नाइट्रोजन की मात्रा का ठहराव के लिए ऑन लाइन नव विकसित कार्यप्रणाली प्रदर्शन किया है। उत्पादों की गुणात्मक विश्लेषण TOF एमएस का उपयोग किया गया है, जबकि खूंटी और एनसीडी मात्रा का ठहराव के लिए इस्तेमाल किया गया। एनसीडी के आवेदन कम सीमा का पता लगाने और equimolar प्रतिक्रिया अपनी उच्च चयनात्मकता के कारण खूंटी का उपयोग कर, की तुलना में काफी सुधार है।

Protocol

सावधानी: कृपया परामर्श प्रासंगिक उपयोग करने से पहले सभी यौगिकों की सामग्री सुरक्षा डाटा शीट (एमएसडीएस)। उचित सुरक्षा प्रथाओं सिफारिश कर रहे हैं। सॉल्यूशंस और नमूने, धूआं हुड में तैयार किया जाना चाहिए व्यक्त?…

Representative Results

वर्णलेख एक शेल तेल के नमूने में यौगिकों से युक्त नाइट्रोजन के लक्षण वर्णन के लिए × जीसी एनसीडी ऑफ़लाइन जीसी का उपयोग कर चित्रा 3 में दी गई है प्राप्त निम्न वर्गों की पहचान की गई। Pyridines, anil…

Discussion

वर्णित प्रयोगात्मक प्रक्रियाओं का अध्ययन किया नमूनों में बंद लाइन और ऑन लाइन पहचान और नाइट्रोजन युक्त यौगिकों की मात्रा का ठहराव एक सफल व्यापक सक्षम होना चाहिए।

के रूप में 3 चित्र मे?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

SBO परियोजना "Bioleum" (आईडब्ल्यूटी-SBO 130039) 'फ्लेमिश सरकार द्वारा लॉन्ग टर्म स्ट्रक्चरल Methusalem अनुदान' विज्ञान और प्रौद्योगिकी के माध्यम से अभिनव संवर्धन के लिए संस्थान फ़्लैंडर्स में (आईडब्ल्यूटी) और के द्वारा समर्थित स्वीकार किया जाता है।

Materials

2-Chloropyridine, 99% Sigma Aldrich C69802 Highly toxic
Shale oil Origin Colorado, US Piceance Basin in
Colorado, USA
Toxic
Pyridine, 99.8% Sigma Aldrich 270970 Highly toxic
Carbon Dioxide, industrial grade refrigerated liquid PRAXAIR CDINDLB0D Wear safety gloves and glasses
Helium, 99.99% PRAXAIR 6.0
Hydrogen, 99.95% Air Liquide 695A-49 Flammable
Oxygen Air Liquide 905A-49+ Flammable
Air Air Liquide 365A-49X
Nitrogen Air Liquide 765A-49
Hexane, 95+% Chemlab CL00.0803.9025 Toxic
Heptane, 99+% Chemlab CL00.0805.9025 Toxic
Nitrogen, industrial grade refrigerated liquid PRAXAIR P0271L50S2A001 Wear safety gloves and glasses
Autosampler Thermo Scientific, Interscience AI/AS 3000
High temperature 6 port/2 position valve Valco Instruments Company Incorporated SSACGUWT
Gas chromatograph Thermo Scientific, Interscience Trace GC ultra
Rafinery Gas Analyzer Thermo Scientific, Interscience KAV00309
rtx-1-PONA column Restek Pure Chromatography 10195-146
BPX-50 column SGE Analytical science 54741
TOF-MS Thermo Scientific, Interscience Tempus Plus 1.4 SR1 Finnigan
NCD Agilent Technologgies NCD 255
Chrom-card Thermo Scientific, Interscience HyperChrom 2.4.1
Xcalibur software Thermo Scientific, Interscience 1.4 SR1
Chrom-card software Thermo Scientific, Interscience HyperChrom 2.7
GC image software Zoex Corporation GC image 2.3

References

  1. Meyer, R. F., Witt, W. J. Definition and World Resources of Natural Bitumens. U.S. Geological Survey. , (1944).
  2. Dusseault, M. B. Comparing Venezuelan and Canadian Heavy Oil and Tar Sand. Petroleum Society’s Canadian International Petroleum Conference. , 2001-061 (2001).
  3. Hernández, R., Villarroel, I. Technological Developments for Enhancing Extra Heavy Oil Productivity in Fields of the Faja Petrolifera del Orinoco (FPO), Venezuela. AAPG Annual Convention and Exhibition. Search and Discovery Article. , 20205 (2013).
  4. Escobar, M., et al. The organic geochemistry of oil seeps from the Sierra de Perijá eastern foothills, Lake Maracaibo Basin, Venezuela. Org. Geochem. 42, 727-738 (2011).
  5. Shafiei, A., Dusseault, M. B. Geomechanics of thermal viscous oil production in sandstones. J. Petrol. Sci. Eng. 103, 121-139 (2013).
  6. Dijkmans, T., Djokic, M. R., Van Geem, K. M., Marin, G. B. Comprehensive compositional analysis of sulfur and nitrogen containing compounds in shale oil using GC × GC – FID/SCD/NCD/TOF-MS. Fuel. 140, 398-406 (2015).
  7. Adam, F., et al. Comprehensive two-dimensional gas chromatography for basic and neutral nitrogen speciation in middle distillates. Fuel. 88, 938-946 (2009).
  8. Charlesworth, J. M. Monitoring the products and kinetics of oil shale pyrolysis using simultaneous nitrogen specific and flame ionization detection. Fuel. 65, 979-986 (1986).
  9. Lissitsyna, K., Huertas, S., Quintero, L. C., Polo, L. M. Novel simple method for quantitation of nitrogen compounds in middle distillates using solid phase extraction and comprehensive two-dimensional gas chromatography. Fuel. 104, 752-757 (2013).
  10. Toraman, H. E., Dijkmans, T., Djokic, M. R., Van Geem, K. M., Marin, G. B. Detailed compositional characterization of plastic waste pyrolysis oil by comprehensive two-dimensional gas-chromatography coupled to multiple detectors. J. Chromatogr. A. 1359, 237-246 (2014).
  11. Phillips, J. B., Beens, J. Comprehensive two-dimensional gas chromatography: a hyphenated method with strong coupling between the two dimensions. J. Chromatogr. A. 856, 331-347 (1999).
  12. Dallüge, J., Beens, J., Brinkman, U. A. T. Comprehensive two-dimensional gas chromatography: a powerful and versatile analytical tool. J. Chromatogr. A. 1000, 69-108 (2003).
  13. Adahchour, M., Beens, J., Vreuls, R. J. J., Batenburg, A. M., Brinkman, U. A. T. Comprehensive two-dimensional gas chromatography of complex samples by using a ‘reversed-type’ column combination: application to food analysis. J. Chromatogr. A. 1054, 47-55 (2004).
  14. Marriott, P., Shellie, R. Principles and applications of comprehensive two-dimensional gas chromatography. TrAC, Trends Anal. Chem. 21, 573-583 (2002).
  15. Dutriez, T., et al. High-temperature two-dimensional gas chromatography of hydrocarbons up to nC60 for analysis of vacuum gas oils. J. Chromatogr. A. 1216, 2905-2912 (2009).
  16. Dutriez, T., Courtiade, M., Thiébaut, D., Dulot, H., Hennion, M. C. Improved hydrocarbons analysis of heavy petroleum fractions by high temperature comprehensive two-dimensional gas chromatography. Fuel. 89, 2338-2345 (2010).
  17. Vendeuvre, C., et al. Characterisation of middle-distillates by comprehensive two-dimensional gas chromatography (GC × GC): A powerful alternative for performing various standard analysis of middle-distillates. J. Chromatogr. A. 1086, 21-28 (2005).
  18. Van Geem, K. M., et al. On-line analysis of complex hydrocarbon mixtures using comprehensive two-dimensional gas chromatography. J. Chromatogr. A. 1217, 6623-6633 (2010).
  19. Van de Vijver, R., et al. Automatic Mechanism and Kinetic Model Generation for Gas- and Solution-Phase Processes: A Perspective on Best Practices, Recent Advances, and Future Challenges. Int. J. Chem. Kinet. 47, 199-231 (2015).
  20. Van Geem, K. M., Reyniers, M. F., Marin, G. B. Reconstruction of the Molecular Composition of Complex Feedstocks for Petrochemical Production Processes. 7th Netherlands Process Technology Symposium. , (2007).
  21. Van Geem, K. M., et al. Molecular reconstruction of naphtha steam cracking feedstocks based on commercial indices. Comput. Chem. Eng. 31, 1020-1034 (2007).
  22. Van Geem, K. M., Reyniers, M. F., Marin, G. B. Challenges of modeling steam cracking of heavy feedstocks. Oil Gas Sci. Technol. – Revue d’IFP. 63, 79-94 (2008).
  23. Alvarez-Majmutov, A., et al. Deriving the Molecular Composition of Middle Distillates by Integrating Statistical Modeling with Advanced Hydrocarbon Characterization. Energy Fuels. 28, 7385-7393 (2014).
  24. Hudebine, D., Verstraete, J. J., Hudebine, D., Verstraete, J., Chapus, T. Reconstruction of Petroleum Feedstocks by Entropy Maximization. Application to FCC Gasolines Statistical Reconstruction of Gas Oil Cuts. Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles. 66, 437-460 (2011).
  25. Verstraete, J. J., Schnongs, P., Dulot, H., Hudebine, D. Molecular reconstruction of heavy petroleum residue fractions. Chem. Eng. Sci. 65, 304-312 (2010).
  26. Neurock, M., Nigam, A., Trauth, D., Klein, M. T. Molecular representation of complex hydrocarbon feedstocks through efficient characterization and stochastic algorithms. Chem. Eng. Sci. 49, 4153-4177 (1994).
  27. Hudebine, D., Verstraete, J. J. Molecular reconstruction of LCO gasoils from overall petroleum analyses. Chem. Eng. Sci. 59, 4755-4763 (2004).
  28. Joo, E., Park, S., Lee, M. Pyrolysis reaction mechanism for industrial naphtha cracking furnaces. Ind. Eng. Chem. Res. 40, 2409-2415 (2001).
  29. Houser, T. J., Mccarville, E. M., Biftu, T. Kinetics of thermal decomposition of Pyridine in a Flow System. Int. J. Chem. Kinet. 12, 555-568 (1980).
  30. Lifshitz, A., Tamburu, C., Suslensky, A. Isomerization and decomposition of pyrrole at elevated temperatures: studies with a single-pulse shock tube. J. Phys. Chem. 93, 5802-5808 (1989).
  31. Memon, H. U. R., Bartle, K. D., Taylor, J. M., Williams, A. The shock tube pyrolysis of pyridine. Int. J. Energy Res. 24, 1141-1159 (2000).
  32. Mackie, C. J., Colket, M. B., Nelson, P. F. Shock tube Pyrolysis of Pyridine. J. Phys. Chem. 94, 4099-4106 (1990).
  33. Winkler, K. J., Karow, W., Rademacher, P. Gas phase pyrolysis of heterocyclic compounds, part 3. flow pyrolysis and annulation reactions of some nitrogen heterocycles. A product oriented study. Arkivoc. , 576-602 (2000).
  34. Zhang, J., Tian, Y., Cui, Y., Zuo, W., Tan, T. Key intermediates in nitrogen transformation during microwave pyrolysis of sewage sludge: A protein model compound study. Bioresour. Technol. 132, 57-63 (2013).
  35. Debono, O., Villot, A. Nitrogen products and reaction pathway of nitrogen compounds during the pyrolysis of various organic wastes. J. Anal. Appl. Pyrolysis. 114, 222-234 (2015).
  36. Alexiou, A., Williams, A. Soot formation in shock-tube pyrolysis of pyridine and toluene-pyridine mixtures. Fuel. 73, 1280-1283 (1994).
  37. Nathan, R. H., Douglas, K. R. Radical pathways in the thermal decomposition of pyridine and diazines: a laser pyrolysis and semi-empirical study. J. Chem. Soc. 2, 269-276 (1998).
  38. Boersma, C., Bregman, J. D., Allamandola, L. J. Properties of Polycyclic Aromatic Hydrocarbons in the Northwest Photon Dominated Region of NGC 7023. I. PAH Size, Charge, Composition, and Structure Distribution. ApJ. 769, 117 (2013).
  39. Boersma, C., Bregman, J., Allamandola, L. J. Properties of Polycyclic Aromatic Hydrocarbons in the Northwest Photon Dominated Region of NGC 7023. II. Traditional PAH Analysis Using k-means as a Visualization Tool. ApJ. 795, (2014).
  40. Boersma, C., Bregman, J., Allamandola, L. J. Properties of Polycyclic Aromatic Hydrocarbons in the Northwest Photon Dominated Region of NGC 7023. III. Quantifying the Traditional Proxy for PAH Charge and Assessing its Role. ApJ. 806, 121 (2015).
  41. Stec, A. A., et al. Quantification of fire gases by FTIR: Experimental characterisation of calibration systems. Fire Saf. J. 46, 225-233 (2011).
  42. Hong, X., Zhang, L., Zhang, T., Qi, F. An Experimental and Theoretical Study of Pyrrole Pyrolysis with Tunable Synchrotron VUV Photoionization and Molecular-Beam Mass Spectrometry. J. Phys. Chem. A. 113, 5397-5405 (2009).
  43. Hong, X., Tai-chang, Z., Li-dong, Z., Qi, F. Identification of Intermediates in Pyridine Pyrolysis with Molecular-beam Mass Spectrometry and Tunable Synchrotron VUV Photoionization. Chin. J. Chem. Phys. 22, 204 (2009).
  44. Li, Y., Qi, F. Recent Applications of Synchrotron VUV Photoionization Mass Spectrometry: Insight into Combustion Chemistry. Acc. Chem. Res. 43, 68-78 (2010).
  45. Tranchida, P. Q., Purcaro, G., Dugo, P., Mondello, L., Purcaro, G. Modulators for comprehensive two-dimensional gas chromatography. TrAC, Trends Anal. Chem. 30, 1437-1461 (2011).
  46. Yan, X. Sulfur and nitrogen chemiluminescence detection in gas chromatographic analysis. J. Chromatogr. A. 976, 3-10 (2002).
  47. Özel, M. Z., Hamilton, J. F., Lewis, A. C. New Sensitive and Quantitative Analysis Method for Organic Nitrogen Compounds in Urban Aerosol Samples. Environ. Sci. Technol. 45, 1497-1505 (2011).
  48. Kocak, D., Ozel, M. Z., Gogus, F., Hamilton, J. F., Lewis, A. C. Determination of volatile nitrosamines in grilled lamb and vegetables using comprehensive gas chromatography – Nitrogen chemiluminescence detection. Food Chem. 135, 2215-2220 (2012).
  49. Dijkmans, T., et al. Production of bio-ethene and propene: alternatives for bulk chemicals and polymers. Green Chem. 15, 3064-3076 (2013).
  50. Pyl, P. S., et al. Biomass to olefins: Cracking of renewable naphtha. Chem. Eng. J. 176-177, 178-187 (2011).
  51. Schietekat, M. C., et al. Catalytic Coating for Reduced Coke Formation in Steam Cracking Reactors. Ind. Eng. Chem. Res. 54, 9525-9535 (2015).
  52. Dietz, W. A. Response Factors for Gas Chromatographic Analyses. J. Chromatogr. Sci. 5, 68-71 (1967).
  53. Dierickx, J. L., Plehiers, P. M., Froment, G. F. On-line gas chromatographic analysis of hydrocarbon effluents: Calibration factors and their correlation. J. Chromatogr. A. 362, 155-174 (1986).
  54. Beens, J., Janssen, H. G., Adahchour, M., Brinkman, U. A. T. Flow regime at ambient outlet pressure and its influence in comprehensive two-dimensional gas chromatography. J. Chromatogr. A. 1086, 141-150 (2005).
  55. Schoenmakers, P. J., Oomen, J. L. M. M., Blomberg, J., Genuit, W., van Velzen, G. Comparison of comprehensive two-dimensional gas chromatography and gas chromatography – mass spectrometry for the characterization of complex hydrocarbon mixtures. J. Chromatogr. A. 892, 29-46 (2000).
  56. Agilent Tech. . Agilent Sulfur Chemiluminescence Detector and Nitrogen Chemiluminescence Detector. Specification Guide. , (2006).
  57. Agilent Tech. . Nitrosamine Analysis by Gas Chromatography and Agilent 255 Nitrogen Chemiluminescence Detector (NCD). Technical Overview. , (2007).
  58. Agilent Tech. . Agilent Model 255 Nitrogen Chemiluminescence Detector (NCD) Analysis of Adhesive Samples Using the NCD. Technical Overview. , (2007).
  59. Griffith, F. J., Winniford, W. L., Sun, K., Edam, R., Luong, C. J. A reversed-flow differential flow modulator for comprehensive two-dimensional gas chromatography. J. Chromatogr. A. 1226, 116-123 (2012).
check_url/54236?article_type=t

Play Video

Cite This Article
Ristic, N. D., Djokic, M. R., Van Geem, K. M., Marin, G. B. On-line Analysis of Nitrogen Containing Compounds in Complex Hydrocarbon Matrixes. J. Vis. Exp. (114), e54236, doi:10.3791/54236 (2016).

View Video