Summary

使用Photoredox催化剂蠕虫状胶束的简便合成可见光介导的分散聚合

Published: June 08, 2016
doi:

Summary

This article describes a process for producing polymeric self-assembled nanoparticles using visible light mediated dispersion polymerization. Using low energy visible light to control the polymerization allows for the reproducible formation of self-assembled worm-like micelles at high solids content.

Abstract

Presented herein is a protocol for the facile synthesis of worm-like micelles by visible light mediated dispersion polymerization. This approach begins with the synthesis of a hydrophilic poly(oligo(ethylene glycol) methyl ether methacrylate) (POEGMA) homopolymer using reversible addition-fragmentation chain-transfer (RAFT) polymerization. Under mild visible light irradiation (λ = 460 nm, 0.7 mW/cm2), this macro-chain transfer agent (macro-CTA) in the presence of a ruthenium based photoredox catalyst, Ru(bpy)3Cl2 can be chain extended with a second monomer to form a well-defined block copolymer in a process known as Photoinduced Electron Transfer RAFT (PET-RAFT). When PET-RAFT is used to chain extend POEGMA with benzyl methacrylate (BzMA) in ethanol (EtOH), polymeric nanoparticles with different morphologies are formed in situ according to a polymerization-induced self-assembly (PISA) mechanism. Self-assembly into nanoparticles presenting POEGMA chains at the corona and poly(benzyl methacrylate) (PBzMA) chains in the core occurs in situ due to the growing insolubility of the PBzMA block in ethanol. Interestingly, the formation of highly pure worm-like micelles can be readily monitored by observing the onset of a highly viscous gel in situ due to nanoparticle entanglements occurring during the polymerization. This process thereby allows for a more reproducible synthesis of worm-like micelles simply by monitoring the solution viscosity during the course of the polymerization. In addition, the light stimulus can be intermittently applied in an ON/OFF manner demonstrating temporal control over the nanoparticle morphology.

Introduction

非球形(和其他)纳米颗粒形态的合成历来使用开始具有良好定义的两亲二嵌段(或嵌段)共聚物的合成和纯化的多步自组装过程完成。其中最常见的自组装技术是由Eisenberg的在20世纪90年代普及并涉及两亲性嵌段共聚物在普通溶剂为两种聚合物嵌段,随后缓慢加入溶剂选择性为块1〜3之一的溶解。作为添加的选择性溶剂(通常为水)中,嵌段共聚物经受自组装以形成聚合物纳米颗粒。最终形态(或形态的混合物)的纳米粒子是由大量的因素,例如各聚合物嵌段,加水的速度与共用的溶剂的性质的相对长度来确定。然而,这种方法一般只允许生产nanopar的ticles在相对 ​​低的固体含量(小于1重量%),因此限制了它的实际的可扩展性4。此外,“中间”相,例如蠕虫状胶束可再现形成可以由于窄的范围的,以稳定这种非球形形态5所需的参数是困难的。

聚合诱导的自组装(PISA)的方法通过利用聚合过程本身来驱动的自组装的原位允许纳米颗粒合成在高得多的固体含量部分地解决了上述艾森伯格方法的缺点(通常为10-30重量%)6 -8。在一个典型的PISA方法中,活性聚合过程用于链延伸的溶剂可溶的大分子引发剂(或宏CTA)与单体是在反应介质中最初可溶,但形成不溶性聚合物。 PISA的方法已被用于通过系统性测试数前的合成蠕虫状胶束 perimental参数,并使用详细的相图作为合成“路线图”5,9。

尽管他们的具有挑战性的合成,存在蠕虫状纳米颗粒由于它们相对于它们的球形同行有趣的性质极大的兴趣。例如,我们已经证明,使用PISA方法合成的装载药物短期和长期的蠕虫状胶束具有体外细胞毒性显著更高相比球状胶束或囊泡10。他人在体内模型11中所示的纳米粒子的纵横比和血液循环时间之间的相关性。其他人已经表明蠕虫状纳米粒子的使用适当的PISA方法合成产生一个宏观凝胶由于纳米颗粒长丝的纳米级纠缠。这些凝胶表现出作为由于其热可逆溶胶-凝胶行为12灭菌凝胶的潜力。

内容】“>该协议描述了在聚合过程中简单地观察该溶液的粘度允许原位监测蠕虫状胶束的形成的方法。相似的蠕虫状胶束凝胶的先前的研究已经表明,高于临界温度时,这些纳米颗粒经受可逆蜗杆球面过渡,因此形成在高温下自由流动的分散体。迄今为止,这些系统已经利用一个热敏感偶氮化合物以引发受控聚合13,14等凝胶化可能不容易在这些系统中观察到热聚合。从这些研究中,有人推测在较低温度下合成PISA衍生的纳米颗粒可允许原位这种凝胶行为观察。

最近我们报道了用一个浅显的室温光聚合技术来调解PISA过程中产生的纳米粒子不同形貌15。这里,可视化协议是由在聚合过程中观察溶液的粘度行为呈现为蠕虫状胶束的再生合成。该分散体聚合反应的进行很容易地利用市售的发光二极管(LED)(λ= 460纳米,0.7毫瓦/厘米2)。

Protocol

1.合成与POEGMA表征宏观CTA 添加低聚(乙二醇)甲基醚甲基丙烯酸酯(OEGMA)(12克,4×10 -2摩尔),4-氰基-4-(phenylcarbonothioylthio)戊酸(CPADB)(0.224克,8×10 -4摩尔), 2,2'-偶氮二(2-甲基丙腈)(AIBN)(16.4毫克,0.1毫摩尔)和50毫升乙腈(MeCN中)到100毫升圆底烧瓶中。 密封该烧瓶用适当大小的橡胶隔片和钢丝和从室温烧瓶冷却到<4℃在冰 – 水浴中。 通…

Representative Results

在这项研究中,两步聚合协议用 ​​于使用PISA方法( 图1)蠕虫状胶束的合成。在第一步骤中,进行OEGMA的聚合,得到一个POEGMA宏CTA其可以用作在随后的聚合步骤中的稳定剂。由于PBzMA的乙醇不溶性,最终导致纳米颗粒形成分散体的条件下将PET-RAFT聚合所得。在聚合过程中,最初透明反应混合物可以观察到成为按照分散聚合混浊,并最终转换到指示蠕虫状胶束?…

Discussion

这种可视化协议表明仅仅通过观察凝胶状行为的发作,监测蠕虫状胶束的形成的能力。这种方法的效用在于以监测,相较于其他的方法在聚合过程中蠕虫形成的能力。可使用两种市售的单体(OEGMA和BzMA的)的两阶段的聚合,得到的自组装POEGMA- b -PBzMA两亲嵌段共聚物来执行此过程。

这里应注意的是,具有不同的反应器几何形状,光强度 ,相对于与图2</stro…

Disclosures

The authors have nothing to disclose.

Acknowledgements

CB is thankful for his Future Fellowship from Australian Research Council (ARC-FT12010096) and UNSW Australia.

Materials

4-Cyano-4-(phenylcarbonothioylthio)pentanoic acid (CPADB) Sigma-Aldrich 722995-5G
Oligo(ethylene glycol) methyl ether methacrylate (OEGMA) Sigma-Aldrich 447935-500ML Average Mn 300, contains 100 ppm MEHQ as inhibitor, 300 ppm BHT as inhibitor
2,2′-Azobis(2-methylpropionitrile) (AIBN) Sigma-Aldrich
Ru(bpy)3Cl2.6H2O Sigma-Aldrich 544981-1G
Benzyl methacrylate (BzMA) Sigma-Aldrich 409448-1L Contains monomethyl ether hydroquinone as inhibitor
Aluminium oxide (basic) Chem-Supply Pty Ltd Australia AL08371000
95% Ethanol (EtOH) Sucrogen Bio Ethanol 80889
Acetonitrile (MeCN) Chem-Supply Pty Ltd Australia RP1005-G2.5L
Tetrahydrofuran (THF) Chem-Supply Pty Ltd Australia TA011-2.5L
Petroleum Spirits (40-60oC) Chem-Supply Pty Ltd Australia PA044-2.5L
Diethyl Ether Chem-Supply Pty Ltd Australia EA0362.5L
Dimethylacetamide (DMAc) VWR International Australia ALFA22916.M1 For GPC analysis
Pasteur pipettes (230 mm) Labtek 355.050.503
Glass beakers Labtek 025.01.902 (2L)/ 2110654 (1L) 2L beaker is for attaching LED strips to form the circular reactor
Commercial LED strip EcoLab n/a λ = 460 nm, 4.8 W/m
4 mL Glass Vials Labtek APC502214B
0.9 mL Quartz Cuvette Starna Scientific Ltd 21/Q/2
Needle (0.8 mm x 38 mm) Beckton Dickson 302017 For deoxygenating reactions
Needle (0.8 mm x 120 mm) B Braun Australia 4665643 For deoxygenating reactions
Sleeve stopper septa (rubber septum) Sigma-Aldrich z564680/z564702
Stirring hotplates VWR International Australia/In Vitro Technologies 97018-488/RADRR91200
Vortex mixer VWR International Australia 412-0098
Vacuum oven In Vitro Technologies MEMVO200

References

  1. Yu, Y., Eisenberg, A. Control of Morphology through Polymer−Solvent Interactions in Crew-Cut Aggregates of Amphiphilic Block Copolymers. J. Am. Chem. Soc. 119 (35), 8383-8384 (1997).
  2. Zhang, L., Eisenberg, A. Thermodynamic vs Kinetic Aspects in the Formation and Morphological Transitions of Crew-Cut Aggregates Produced by Self-Assembly of Polystyrene-b-poly(acrylic acid) Block Copolymers in Dilute Solution. Macromolecules. 32 (7), 2239-2249 (1999).
  3. Zhang, L., Eisenberg, A. Multiple Morphologies of ‘Crew-Cut’ Aggregates of Polystyrene-b-poly(acrylic acid) Block Copolymers. Science. 268 (5218), 1728-1731 (1995).
  4. Yu, K., Zhang, L., Eisenberg, A. Novel Morphologies of "Crew-Cut" Aggregates of Amphiphilic Diblock Copolymers in Dilute Solution. Langmuir. 12 (25), 5980-5984 (1996).
  5. Blanazs, A., Ryan, A. J., Armes, S. P. Predictive Phase Diagrams for RAFT Aqueous Dispersion Polymerization: Effect of Block Copolymer Composition, Molecular Weight, and Copolymer Concentration. Macromolecules. 45 (12), 5099-5107 (2012).
  6. Ladmiral, V., Semsarilar, M., Canton, I., Armes, S. P. Polymerization-induced self-assembly of galactose-functionalized biocompatible diblock copolymers for intracellular delivery. J. Am. Chem. Soc. 135 (36), 13574-13581 (2013).
  7. Sugihara, S., Blanazs, A., Armes, S. P., Ryan, A. J., Lewis, A. L. Aqueous Dispersion Polymerization: A New Paradigm for in Situ Block Copolymer Self-Assembly in Concentrated Solution. J. Am. Chem. Soc. 133 (39), 15707-15713 (2011).
  8. Wan, W. M., Hong, C. Y., Pan, C. Y. One-pot synthesis of nanomaterials via RAFT polymerization induced self-assembly and morphology transition. Chem. Comm. (39), 5883-5885 (2009).
  9. Semsarilar, M., Jones, E. R., Blanazs, A., Armes, S. P. Efficient Synthesis of Sterically-Stabilized Nano-Objects via RAFT Dispersion Polymerization of Benzyl Methacrylate in Alcoholic Media. Adv. Mater. 24 (25), 3378-3382 (2012).
  10. Karagoz, B., et al. Polymerization-Induced Self-Assembly (PISA) – control over the morphology of nanoparticles for drug delivery applications. Polym. Chem. 5 (2), 350-355 (2014).
  11. Geng, Y., et al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nano. 2 (4), 249-255 (2007).
  12. Blanazs, A., et al. Sterilizable gels from thermoresponsive block copolymer worms. J. Am. Chem. Soc. 134 (23), 9741-9748 (2012).
  13. Pei, Y., Thurairajah, L., Sugita, O. R., Lowe, A. B. RAFT Dispersion Polymerization in Nonpolar Media: Polymerization of 3-Phenylpropyl Methacrylate in n-Tetradecane with Poly(stearyl methacrylate) Homopolymers as Macro Chain Transfer Agents. Macromolecules. 48 (1), 236-244 (2015).
  14. Fielding, L. A., Lane, J. A., Derry, M. J., Mykhaylyk, O. O., Armes, S. P. Thermo-responsive Diblock Copolymer Worm Gels in Non-polar Solvents. J. Am. Chem. Soc. 136 (15), 5790-5798 (2014).
  15. Yeow, J., Xu, J., Boyer, C. Polymerization-Induced Self-Assembly Using Visible Light Mediated Photoinduced Electron Transfer-Reversible Addition-Fragmentation Chain Transfer Polymerization. ACS Macro Lett. 4 (9), 984-990 (2015).
  16. Xu, J., Jung, K., Corrigan, N. A., Boyer, C. Aqueous photoinduced living/controlled polymerization: tailoring for bioconjugation. Chem. Sci. 5 (9), 3568-3575 (2014).
  17. Pei, Y., et al. RAFT dispersion polymerization of 3-phenylpropyl methacrylate with poly[2-(dimethylamino)ethyl methacrylate] macro-CTAs in ethanol and associated thermoreversible polymorphism. Soft Matter. 10 (31), 5787-5796 (2014).
check_url/54269?article_type=t

Play Video

Cite This Article
Yeow, J., Xu, J., Boyer, C. Facile Synthesis of Worm-like Micelles by Visible Light Mediated Dispersion Polymerization Using Photoredox Catalyst. J. Vis. Exp. (112), e54269, doi:10.3791/54269 (2016).

View Video