Summary

暴跌冻结:在透射电子显微镜的超微结构和免疫组化研究工具悬架细胞

Published: May 05, 2017
doi:

Summary

此手稿描述了通过透射电子显微镜可视化用混悬剂细胞中易于使用和低成本的冷冻固定方法。

Abstract

透射电子显微镜(TEM)是研究细胞超微结构,以本地化的蛋白质和以非常高的分辨率可视化大分子复合物不平凡的工具。但是,要获得尽可能接近原生状态,需要完善的样品保存。与醛常规电子显微镜(EM)固定,比如,不能提供良好的超微结构保存。固定剂的缓慢渗透诱导细胞重组和各种细胞成分的损失。因此,常规EM固定不允许结构和抗原性的瞬时稳定和保存。审查细胞内事件的最佳选择是使用冷冻固定,然后,保持细胞的天然状态的冷冻替代固定方法。高压冷冻/冻干取代,其保留细胞的超微结构的完整性,是最常用的方法,但需要expensi已经装备。这里,易于使用和低成本的冷冻固定方法进行冷冻取代悬浮细胞培养物呈现。

Introduction

样品制备为任何电子显微镜研究成功的关键。常规EM固定是用于固定的组织或细胞进行透射电子显微镜(TEM)1的主要方法。首先,醛和四氧化锇用于化学固定在室温下该材料。然后,将材料脱水用有机溶剂,渗透,并包埋在环氧树脂中。此方法取决于固定剂的渗透速率进入细胞。因此,细胞内容物中的工件和提取通常被观察到2个。

冷冻固定显然是细胞结构3保存一个更好的选择,让他们完好。可以使用冷冻固定/冷冻置换方法来获得在薄树脂切片TEM图像4的最高质量。这种技术的目的是为了获得玻璃化的双ological样品没有冰晶形成或含有冰晶小到足以不损伤细胞的超微结构。高压冷冻(HPF)和超快速冷冻固定,其也被称为切入冷冻(PF),两种方法来cryofix样品。 HPF在单元固定不动的分子瞬时且避免了由常规EM固定的损害。几种类型的冷冻机和自动替换设备已经开发5。冷冻机器和消耗品(液氮,标本的载体,等等)是昂贵的,但它们允许生产高品质的电子显微照片6,7。 PF是已在50年代初采用和在文献中简单和便宜8 .During的PF程序,将制备的样品以很快的速度冷冻,得到冰晶尺寸小于3至5nm,描述了一种技术。为此,所述样品是陷入液态制冷剂,如乙烷,丙烷,或乙烷 – 丙烷混合物。自50年代以来,PF的改进已经完成,以使这项技术提供给用户更大的数字。高压冷冻目前冻结大量的各种样品的厚度大于50微米(最多为盘形样品的厚度为200微米)5的唯一可行的办法,而PF被广泛地用于图像的小物体(<100nm的),如悬浮于无定形冰9的薄膜大分子复合物。较大的样品,例如真核细胞,可以通过PF cryofixed,但需要试样保持器,如毛细管铜管或三明治系统8,10,11。

这里,快速,易于使用和可用于各种悬浮细胞培养物的低成本暴跌冷冻/冻干替代技术被呈现。

Protocol

1.福尔瓦网格薄膜的制备注意:在使用个人防护设备(手套,实验室外套,眼镜)在通风橱下执行氯仿操纵。使用400个目电子显微镜铜网格。与其他类型的网格(其它的网孔尺寸,金和镍网格),冷冻的质量较差。 制备0.3%的聚乙烯醇缩甲醛的氯仿100mL的溶液。允许不搅拌溶解过夜。 把400目在玻璃小瓶中电子microscopycopper网格(直径3.05毫米)(高度为3厘米,直?…

Representative Results

在本文中,提出了一种用于超微结构( 图1和图2)和免疫标记( 图3)的研究一种易于使用和低成本的暴跌冷冻方法。我们证明,这是没有必要有专用设备冷冻置换程序,该程序升温只需不到6个小时,而不是使用专用系统的24个小时。 PF /冷冻置换方法导致在<…

Discussion

TEM是细胞器,细胞,和组织的超微结构观测的有效方法。冷冻固定/冷冻取代是目前两种超微结构和蛋白的抗原性的保存的最佳方法。化学固定剂渗透和行动非常缓慢,从而使结构重组的超微结构2的完全稳定之前。相反,冷冻固定/冷冻置换瞬间稳定蜂窝结构4。然而,冷冻固定/冷冻替代技术包括了许多限制和困难从而限制了它们的应用范围的。这涉及样品,冷?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们对此表示感谢M. Bouchecareilh,E.Tétaud,S. Duvezin-Caubet和A.德文的帮助和意见的手稿。我们非常感谢何地拍摄的图像波尔多成像中心的电子成像极。这项工作是由中心法国国家科学研究的支持。

Materials

Grids Electron Microscopy Sciences T400-Cu
Formvar Electron Microscopy Sciences 15800
Propane N35
Liquid nitrogen
Double edge dissecting needle Electron Microscopy Sciences 72947
Cryovials Electron Microscopy Sciences 61802-02
Osmium tetroxide Electron Microscopy Sciences 19130
Glass vial 8,5 ml Electron Microscopy Sciences 64252
Uranyl acetate Electron Microscopy Sciences 48851
Acetone Sigma 32201
Ethanol 100% Sigma 32221
Glass slides VWR international 631-9439
Tweezers
Acrylic resin Electron Microscopy Sciences 104371
Epoxy resin M Sigma 10951
Epoxy resin M hardener Sigma 10953
Dibutyl phtalate  Sigma 80102
Epoxy resin M accelerateur Sigma 10952
Crystallizer Fischer scientific 08-762-9
Joseph paper VWR international 111-5009
Brass cups do it yourself shop or made by yourself
Saccharomyces cerevisiae
Shizosacharomyces cerevisiae
Trypanosoma brucei
Leishmania amazonensis
Escherichia Coli 
Airtight box Fischer scientific 7135-0001 
Air purifying respirator Fischer scientific 3M 7502 
Cartridge for respirator Fischer scientific 3M 6001
Particulate filter Fischer scientific 3M 5N11 

References

  1. Palade, G. E., Porter, K. R. Studies on the endoplasmic reticulum. I. Its identification in cells in situ. J Exp Med. 100 (6), 641-656 (1954).
  2. Kellenberger, E., Johansen, R., Maeder, M., Bohrmann, B., Stauffer, E., Villiger, W. Artefacts and morphological changes during chemical fixation. J Microsc. 168 (Pt 2), 181-201 (1992).
  3. Studer, D., Humbel, B. M., Chiquet, M. Electron microscopy of high pressure frozen samples: bridging the gap between cellular ultrastructure and atomic resolution. Histochem Cell Biol. 130 (5), 877-889 (2008).
  4. McDonald, K. L. Out with the old and in with the new: rapid specimen preparation procedures for electron microscopy of sectioned biological material. Protoplasma. 251, 429-448 (2014).
  5. Studer, D., Graber, W., Al-Amoudi, A., Eggli, P. A new approach for cryofixation by high-pressure freezing. J Microsc. 203 (Pt 3), 285-294 (2001).
  6. Bernales, S., McDonald, K. L., Walter, P. Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol. 4 (12), 2311-2324 (2006).
  7. Kissová, I., Salin, B., Schaeffer, J., Bhatia, S., Manon, S., Camougrand, N. Selective and non-selective autophagic degradation of mitochondria in yeast. Autophagy. 3 (4), 329-336 (2007).
  8. Gilkey, J. C., Staehling, A. Advances in ultrarapid freezing for the preservation of cellular ultrastructure. Microsc Res Tech. 3 (2), 177-210 (1986).
  9. Nogales, E., Scheres, S. H. Cryo-EM: A Unique Tool for the Visualization of Macromolecular Complexity. Mol Cell. 58 (4), 677-689 (2015).
  10. Baba, M. Electron microscopy in yeast. Methods Enzymol. 451, 133-149 (2008).
  11. Leunissen, J. L. M., Yi, H. Self-pressurized rapid freezing (SPRF): a novel cryofixation method for specimen preparation in electron microscopy. J Microsc. 235 (1), 25-35 (2009).
  12. Lefebvre, M., et al. LdFlabarin a new BAR domain membrane protein of Leishmania flagellum. PLoS One. 8 (9), 1-12 (2013).
  13. Tetaud, E., et al. TbFlabarin, a flagellar protein of Trypanosoma brucei, highlights differences between Leishmania and Trypanosoma flagellar-targeting signals. Exp Parasitol. 166, 97-107 (2016).
  14. Wasmer, C., et al. Solid-state NMR spectroscopy reveals that E coli inclusion bodies of HET-s(218-289) are amyloids. Angew Chem Int Ed Engl. 48 (26), 4858-4860 (2009).
  15. Lefebvre-Legendre, L., et al. Failure to assemble the alpha 3 beta 3 subcomplex of the ATP synthase leads to accumulation of the alpha and beta subunits within inclusion bodies and the loss of mitochondrial cristae in Saccharomyces cerevisiae. J Biol Chem. 280 (18), 18386-18389 (2005).
  16. Paumard, P., et al. The ATP synthase is involved in generating mitochondrial cristae morphology. EMBO J. 21 (3), 221-230 (2002).
  17. Gabriel, F., et al. A Fox2-dependent fatty acid ß-oxidation pathway coexists both in peroxisomes and mitochondria of the ascomycete yeast Candida lusitaniae. PLoS One. 9 (12), 1-27 (2014).
  18. Dubochet, J. The physics of rapid cooling and its implications for cryoimmobilization of cells. Methods Cell Biol. 79, 7-21 (2007).
  19. Meryman, H. T. Cryopreservation of living cells: principles and practice. Transfusion. 47 (5), 935-945 (2007).
  20. Vanhecke, D., Graber, W., Studer, D. Close-to-native ultrastructural preservation by high pressure freezing. Methods Cell Biol. 88, 151-164 (2008).
  21. Bobik, K., Dunlap, J. R., Burch-Smith, T. M. Tandem high-pressure freezing and quick freeze substitution of plant tissues for transmission electron microscopy. J Vis Exp. (92), e51844 (2014).
  22. Pinan-Lucarré, B., Clavé, C. Monitoring autophagy in the filamentous fungus Podospora anserina. Methods Enzymol. 451, 251-270 (2008).
  23. Follet-Gueye, M. L., Pagny, S., Faye, L., Gomord, V., Driouich, A. An improved chemical fixation method suitable for immunogold localization of green fluorescent protein in the Golgi apparatus of tobacco Bright Yellow (BY-2) cells. J Histochem Cytochem. 51 (7), 931-940 (2003).
  24. Jesus, D. M., Moussatche, N., Condit, R. C. An improved high pressure freezing and freeze substitution method to preserve the labile vaccinia virus nucleocapsid. J Struct Biol. 195 (1), 41-48 (2016).
check_url/54874?article_type=t

Play Video

Cite This Article
Blancard, C., Salin, B. Plunge Freezing: A Tool for the Ultrastructural and Immunolocalization Studies of Suspension Cells in Transmission Electron Microscopy. J. Vis. Exp. (123), e54874, doi:10.3791/54874 (2017).

View Video