Summary

Ljus Sheet fluorescensmikroskopi av växtrötter som växer på ytan av en gel

Published: January 18, 2017
doi:

Summary

This protocol shows a plant sample preparation method for light-sheet microscopy. The setup is characterized by mounting the plant vertically on the surface of a gel and letting it grow in controlled bright conditions. This allows long-term observation of plant organ development in standardized conditions.

Abstract

One of the key questions in understanding plant development is how single cells behave in a larger context of the tissue. Therefore, it requires the observation of the whole organ with a high spatial- as well as temporal resolution over prolonged periods of time, which may cause photo-toxic effects. This protocol shows a plant sample preparation method for light-sheet microscopy, which is characterized by mounting the plant vertically on the surface of a gel. The plant is mounted in such a way that the roots are submerged in a liquid medium while the leaves remain in the air. In order to ensure photosynthetic activity of the plant, a custom-made lighting system illuminates the leaves. To keep the roots in darkness the water surface is covered with sheets of black plastic foil. This method allows long-term imaging of plant organ development in standardized conditions.

Introduction

En av de viktigaste frågorna i förståelse växtens utveckling är hur enskilda celler beter under organdifferentiering och tillväxt. Helst cellulära händelser, såsom gen-uttrycksmönster och intracellulär proteinlokalisering, kan ses i ljuset av ett större sammanhang av vävnaden. Detta mål innebär tekniska utmaningar och kräver hela organ observation med en hög rumslig liksom temporal upplösning över längre tidsperioder, vilket kan orsaka fototoxisk effekt. Eftersom växter snabbt anpassa sig till förändringar i miljön, måste de växande villkor hårt kontrollerad. För att göra en långsiktig avbildning utan att störa den fysiologiska tillstånd av anläggningen, har tre saker att säkerställas, 1) odlingsförhållanden i provkammaren, 2) stabil prov montering under långa tidsperioder, och 3) bild med låga ljusintensiteter för att undvika bild-skador och icke-fysiologiska betingelser.

Fysiologisk växande conditions i mikroskop provkammaren är avgörande för långtidsförsök. Det finns ett antal protokoll som finns tillgängliga som beskriver avbildande odlingskammare för konfokala mikroskop 1 3. Emellertid introducerar konfokalmikroskopi hög ljusintensitet till anläggningen, vilket kan orsaka stressreaktioner och vanligtvis hämmar tillväxten 4. Dessutom har de flesta konventionella mikroskop tillåter endast horisontell positionering av provet, vilket inte är optimalt för växter eftersom de försöker att omorientera sig och växa till vektorn av tyngdkraften. Under de senaste tio åren har ljus ark mikroskop framträtt som ett kraftfullt verktyg för att fånga utvecklingen av stora prover på cell upplösning för tidsperioder av upp till flera dagar 5 9. Ljus ark mikroskopi tillåter placering av provet vertikalt och används alltmer inom växtforskning studerar rotutveckling 10-21, som nyligen granskats av Berthet och Maizel 22. Många av de nämnda studierna 10,13 18,21 var optimerade och genomförs i laboratoriet Ernst HK Stelzer utnyttjar ett speciellt sätt att provet montering präglas av växande roten på ytan av en gel 17. I dessa studier var en skräddarsydd mikroskop används, där växten hålls från botten. Däremot var majoriteten av i stort sett tillgängliga mikroskop ljus ark hålla provet från toppen. Således, denna speciella framställningsmetod kan inte lätt anbringas. Den metod som presenteras här ger ett protokoll för den väletablerade på ytmontering metod som är tillämplig för OpenSPIM 23, en öppen tillgång plattform för att tillämpa och förbättra Selektiv Plane Belysning Microscopy (SPIM).

Det övergripande målet med detta protokoll är att möjliggöra en långsiktig avbildning av Arabidopsis rötter i OpenSPIM ljus ark mikroskop. Detta åstadkoms genom att odla en växt upprätt på de surface av en gel med rötterna i ett vätskemedium medan bladen förblir i luften. För att säkerställa en fotosyntetisk aktivitet av anläggningen, belyser en skräddarsydd belysningssystem bladen men inte rötterna (figur 1).

Protocol

1. Arabidopsis Odling Före Imaging Förbereda ½ MS-medium (halv styrka Murashige och Skoog-medium) genom att tillsätta 2,15 g MS-medium, 10 g sackaros, 0,97 g MES (2- (N morfolino) etansulfonsyra) och en L DDH 2 O (dubbeldestillerat vatten ) in i en 1 L flaska. Justera pH till 5,8 med hjälp av KOH. Tillsätt 15 g / L gellangummi till ½ MS-medium och autoklavera den under 20 min vid 121 ° C. Häll 30 ml av den varma mediet i fyrkantiga Petri-skålar (245 x 245 x 25 mm) för att skapa ett skikt av gel med en tjocklek av ca 2 mm. Låt skålarna svalna till rumstemperatur för att tillåta mediet att stelna. Sätta steriliserade Arabidopsis frön in i en 1,5 ml reaktions rör innehållande 1 ml sterilt H2O Plocka upp fröna med användning av en glas pipett eller en 1000 mikroliter pipettspets och sår dem på ytan av gelén. Placera frön separat ca 10 mm från varandra. Förslut plattan med tejp. Inkubera plattan i 24 h vid 4° C (skiktning). Odla plattan i ett tillväxt inkubator, t ex vid 22 ° C i en 16/8 h dag / nattcykel med 120-140 | imol / m ^ / s mängden ljus i 6 dagar. Upp till 10 dagar gamla växter kan användas. 2. Växtprovberedning Metod Obs: Provhållaren kan antingen 3D tryckta eller handgjorda i en maskinverkstad med hjälp av dimensioner som visas i figur 2C. 3D-modellen filen är anordnad i det kompletterande materialet (Supplemental_File _-_ 3D_Sample_Holder.stl). Se länk för beställning av 3D tryck i materiallistan. Lägg 5 g låg-smält agaros i en 50 ml flaska innehållande 50 ml ½ MS-medium och autoklavera den under 20 min vid 121 ° C. Alikvotera 1% låg-smält agaros-lösning i 1,5 ml reaktionsrör. Lagra vid 4 ° C (kan användas i minst två månader). Smält en delmängd av en %% låg smältpunkt agaros vid 80 ° C och låt det svalna till33 ° C. Rengör provhållaren i en ultraljudsenhet. Sterilisera provhållaren med 70% etanol och tvätta med sterilt vatten. Skär gel runt anläggningen med hjälp av en skalpell. Lyft block med en platt spatel och skjut försiktigt på provhållaren med hjälp av en andra spatel. Limma gelen på provhållaren med 1% agaros (vid 33 ° C) med användning av en 100 mikroliter pipett. Limma anläggningen på gelén med 1% agaros med användning av en 10 mikroliter pipett. Använda ett stereomikroskop för att kontrollera att bladen inte är täckta med gel. Placera inte gelen direkt på regionen av intresse. För att förhindra växten från att torka ut, arbeta oavbrutet. Sätt in provhållaren i en 1000 mikroliter pipettspets när det är möjligt. Använda pipettspetsen som ett lock och skjut den försiktigt över en ände av provhållaren, där anläggningen är placerad. Placera provhållaren i en pipettspets rutan och förbereda fler växter vid behov. Växter kan vara directly avbildas eller sätta tillbaka i tillväxt inkubatorn. 3. Ställ in mikroskop OBS: LED-belysningssystemet är en specialbyggd lampa. De tekniska detaljerna som krävs för att bygga upp den LED-ringen kan återfinnas i Figur 3 och materialet listan. Se kompletterande material filen (Supplemental_File _-_ LED_Ring_Board.brd) för ombord design. Skruv eller lim (t.ex. dubbelhäftande tejp) LED ringen på den nedre sidan av OpenSPIM x / y / z / θ steg arm. Anslut LED ring med en justerbar strömförsörjning (0-30 V, max 2 A). Justera spänningen till önskad ljusintensitet (för Arabidopsis, 120-140 mikromol / m 2 / s, figur 3D). Sterilisera provkammaren med 70% etanol och tvätta med sterilt vatten. Rengör objektiv med bensin och linsrengöringsservett. Sterilisera objektivlins med 70% etanol. Anslut perfusipå rör till provkammaren i en enkelriktad anordning. Sätt en 1 L flaska innehållande färsk ½ MS-medium och en annan tom flaska bredvid den peristaltiska perfusion pumpen. Ansluta flaskan med medium med den nedre inloppet till provkammaren med hjälp av en perfusion rör. Anslut den övre utlopp provkammaren med den tomma flaskan till papperskorgen använda mediet med hjälp av en annan perfusion rör. Ställa in hastigheten på flödet till 1 ml / min. OBS: För att inte överhörningen provkammaren, är det viktigt att ha en högre utflöde än inflödet. Antingen öka pumphastigheten eller använda ett rör med en större innerdiameter, för utflöde. Skär en svart plastfolie i 3 mm små fyrkanter, tvätta med 70% etanol och låt dem torka innan de placeras i provkammaren på vattenytan. Avlägsna pipettspetsen från provhållaren och sätt in provhållaren i provkammaren. Om nytillverkade provhållaren inte passar in på scenen armen, använd en fin sandpapper för att göra det tunnare eller använda en O-ring (∅ 6 mm) i fall det är för tunt. För att skapa locken, skär den svarta aluminiumfolien i två 50 x 25 mm bitar. Göra en 5 mm skurna i mitten av en sida av varje stycke. Vik att skapa en triangel indrag (figur 1D). Stäng provkammaren med de två locken genom att sätta ett lock på toppen av provkammaren med triangel fördjupningar vetter mot provhållaren. Se till att växtblad inte befinner sig i skuggan av locken och ta emot ljus från belysningssystemet. Hitta regionen av intresse genom att använda x / y / z och rotation skede att placera en ny sido rot i synfältet. Innan inspelningen låta systemet jämvikt under åtminstone 15 minuter. Setup bilden förvärvet. Ställ en bunt med 217 bilder med 3 um z-avstånd (650 nm) och ställ in time lapse med 15 min imaging intervall för en period på totalt 17 timmar. OBS: En detaljerad dokumentation omhur du använder OpenSPIM programvara kan hittas på (http://openspim.org/Acquisition#Acquiring_a_Stack). Starta inspelningen.

Representative Results

This sample preparation method allows the cultivation of the plant inside the microscope sample chamber while observing the root system with a light-sheet microscope (Figure 1). The plant grows on the surface of a layer of gel (½ MS medium containing 1.5% gellan gum) mounted on a custom designed sample holder (Figure 2). The sample holder is 3D printed using a transparent resin as material. A manufactured version highlighting the dimensions is depicted in Figure 2C. The roots are immersed in liquid (½ MS medium), which is continuously refreshed by a perfusion system. The leaves remain in the air and are continuously illuminated with a light intensity of 130 µmol/m²/s coming from blue and red LEDs that are arranged in a ring above the plant (Figure 1A, B and Figure 3A-C). The LED ring is manufactured in our machine workshop and we provide technical details on how to build the LED-ring in the Figure 3 and the material list. The light intensity can be continuously adjusted ranging from 30-250 µmol/m2/s (Figure 3D). The root system is shaded by small sheets of a black plastic foil covering the water surface (Figure 1). Any stray light from the illumination that is collected by the detection lens is filtered by the GFP filter (Figure 3E). With this setup, a time lapse of a growing Arabidopsis lateral root was recorded for 17 h using a 20X/0.5 lens (Figure 4). The lateral root has its origin in the pericycle cell layer, which is located deep inside the primary root. In order to demonstrate the imaging capabilities even deeper inside of a tissue for prolonged time periods, a higher magnification (40X/0.75) was used to capture the formation of a lateral root from the first stage primordium until the emergence out of the primary root within a time period of 38 h (Figure 5). An exemplary 2D slice of the data set is shown in Fig. 5B. This recording allows us to follow the dynamics of lateral root formation in 3D (Figure 5A) with a cellular resolution. Figure 1: Growing conditions inside the OpenSPIM sample chamber. A) Sketch of the imaging chamber. The plant is growing upright on the surface of a gel, mounted on a custom built sample holder (see also Figure 2). The roots are growing in a liquid medium, which is continuously exchanged by a perfusion system. The plant leaves grow in air and are illuminated by red and blue LEDs (see also Figure 3). The root system is shaded with small sheets of a black plastic foil covering the water surface. A lid made of two pieces of black aluminum foil further reduces the amount of light below the water surface and maintains humidity in the sample chamber. The magnified panel on the right highlights the plant growing on the surface of a block of gel immersed in the liquid medium. A drop of agarose mounts the root onto the gel. The dashed box indicates the region of interest observed by the microscope. B) Photograph of the imaging chamber (without lid). Numbers (1)-(10) in A and B represent: (1): x/y/z/θ-stage with LED ring, (2): sample holder, (3): lid, (4): Arabidopsis thaliana, (5): sheets of black plastic foil, (6): perfusion system, (7): detection objective lens, (8): liquid medium, (9): sample chamber, (10): illumination objective lens. C) The lid is made of two pieces of black aluminum foil. Please click here to view a larger version of this figure. Figure 2: The sample holder. A) 3D model. The 3D model file is provided in the supplemental material. B) Photograph of 3D prints using different materials (1)-(3): transparent acrylic plastics, (4) and (5): resin, (6): transparent resin. C) Technical drawing of the sample holder, numbers represent millimeter. D) Photograph of the manufactured sample holder with a plant mounted. The dashed area can be observed by the microscope. Please click here to view a larger version of this figure. Figure 3: Plant illumination setup. A) Schematic circuit diagram of the lamp. Pairs of LEDs can be switched on/off individually for directional lightning. LED: light-emitting diode, R: resistance, T: transistor, JP: pinhead. B) The final design of the illumination lamp was drawn using a PCB-software (PCB: printed circuit board). We provide the board design file in the supplemental material. The board was then manufactured and assembled in our institute's MIBA machine shop. C) Photograph of the LED ring switched on. Four pairs of a red and a blue LED are arranged in a ring. D) The range of voltage can be adjusted between 3.5 V and 14.0 V. Resistances were used to reach the amount of light ranging from 30-250 µmol/m2/s (R1-8: 220 Ohm, R9-12: 1,220 Ohm). E) The emission spectrum of the lamp, GFP and YFP. Please click here to view a larger version of this figure. Figure 4: Time lapse recording of Arabidopsis thaliana lateral root. The 5 days old seedling expresses a membrane marker (pUBQ10::YFP-PIP1;4) and a nuclear reporter (pGATA23::nls-GUS-GFP) specifically marking pericycle cells that develop into a lateral root. A stack of 217 images (3 µm z-spacing) was captured every 15 min for 17 h recording using a 20X/0.5 lens. A) Four time points out of 69 are shown in a maximum intensity projection. B) Six out of 217 single slices of a z-stack of one time point are shown. Scale bars in A and B represent 100 µm. Please click here to view a larger version of this figure. Figure 5: Time lapse recording of Arabidopsis thaliana lateral root. The 6 days old seedling expresses a membrane marker (pUBQ10::YFP-PIP1;4) and a nuclear reporter (pGATA23::nls-GUS-GFP) specifically marking pericycle cells that develop into a lateral root. A stack of 200 images (1.5 µm z-spacing) was captured every 15 min for 38 h recording using a 40X/0.75 lens. A) 3D rendering of four time points, the numbers in the grid represent µm, B) single slice through the central plane of the main root. Scale bar represents 50 µm. Please click here to view a larger version of this figure. Supplemental_File_-_3D_Sample_Holder.stl. The 3D model file is provided. Please click here to download this file. Supplemental File LED Ring Board.brd. The board design file is provided. Please click here to download this file.

Discussion

Light Sheet Fluorescence Microscopy has the great advantage to combine low phototoxicity and ultrafast acquisition speed, which can be used to capture a large volume with a high spatio-temporal resolution while keeping the sample in a physiological state. The resolution of a light sheet microscope can be compared to that of a confocal microscope9. However, light scattering and absorption occurs along the excitation and emission path individually and the overall image quality can be significantly lower inside opaque tissues compared to the surface. To circumvent this complication one can use the possibility to rotate the sample along the vertical axis and observe the same volume from different directions. But this is not always advantageous, e.g. lateral roots emerge on one side of the root and imaging from behind results in a low image quality without gaining more information. However, the rotation can be principally used to position the sample in the best way. The classic horizontal arrangement of the objective lenses allows for new ways of sample mounting. Plants benefit from a vertical position. Presented here, the "on the surface of the gel" mounting method has several advantages compared to other mounting methods such as embedding the root inside of a gel24,25. 1) The root system is in direct contact with the liquid medium. The sample chamber is connected to a perfusion system which provides continuously fresh medium. It can also be used to rapidly exchange the entire volume of the sample chamber to apply different media or drugs. 2) Prior to sample preparation plants grow as they are used to grow in laboratories. Plants can be selected under a fluorescence microscope and only the desired plants need to be prepared. 3) The plant is transferred from the Petri dish to the sample holder without being touched. Thereby the plant can further develop on the same gel it was growing on in the growth incubator and mechanical stress is reduced to a minimum. 4) The view on the specimen is unobstructed and optical aberrations are minimized because the space between the sample and the detection objective is solely filled with medium and no other materials with differing refractive indices.

In order to perform long-term imaging, the plant illumination system is necessary to ensure photosynthetic activity of the plant. In most laboratories plants grow on a transparent gel, i.e. the roots are exposed to light. This may cause different responses to their environment and induces changes in their biochemistry and development26,27. In order to reduce the amount of light on the root system, black plastic foil was used to cover the water surface as well as a lid made of black aluminum foil covered the sample chamber. Light can reach the plant leaves through the central hole in the lid. In this setup, no increase in background light was observed, suggesting that the amount of stray light from the red and blue LEDs was significantly reduced by the GFP filter and the shading approaches. This allowed keeping the light turned on during image acquisition without increasing the camera background noise.

The sample holder is designed for 3D printing. However, the choice of material is crucial as several plastics that were tested were not 100% stable, resulting in a drift of the sample. Therefore, it is recommended to use resins instead or build the sample holder by milling a Polyethylene (PEP) rod. When using a light sheet microscope setup with double-sided illumination system the sample holder might interfere with one of the light sheets depending on the rotation angle. To reduce mechanical stress during scooping the plant from the plate, use a flat angle of the spatula. The plant can quickly dry out and experience air flow for the very first time. Try to avoid any air draft (rapid movements, air-condition flow), work uninterruptedly and slide the sample holder into a 1,000 µL pipet tip whenever possible. Inside the microscope, it is crucial to not dip the whole plant in liquid and keep the leaves dry.

The technique is ideal for imaging early stages of lateral root formation. When performing long term imaging of mature root tips one must keep in mind that Arabidopsis roots grow with 100-300 µm/h rapidly out of the field of view. A very useful future implementation could be an automated tracking algorithm, which would allow following root tip growth over prolonged periods of time. The ability to control environmental conditions such as light and nutrient composition of the medium during the acquisition process allows investigating how plants adapt to changes. The root is in direct contact with the liquid medium, which can be used to apply drugs to chemically activate gene expression, for example using the dexamethasone inducible28 or the β-estradiol inducible system29. However, it takes time to exchange the entire volume of the sample chamber to wash out a drug. The setup could be improved by minimizing the volume of the sample chamber to accelerate medium exchange. Nevertheless, this technique has a great potential. The combination of mounting procedure, standardized growing conditions and the gentle image acquisition using light-sheet microscopy allows long-term studies of plant development with high resolution at a physiological level. This will help researchers to explore fundamental mechanisms of plant development.

Disclosures

The authors have nothing to disclose.

Acknowledgements

We thank Matyáš Fendrych for critical reading/viewing and Stephan Stadlbauer for the audio equipment. Thanks to the Miba Machine Shop at IST Austria for their contribution to the OpenSPIM. The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA grant agreement n° [291734] and European Research Council (project ERC-2011-StG-20101109-PSDP).

Materials

Agarose, low melting VWR AFFY3282125GM
Black aluminum foil Thorlabs BKF12
Black plastic foil Carl Roth HT83.2
LED blue (453 nm) OSRAM LD CN5M-1R1S-35-1
LED red (625 nm) OSRAM LR T66F-ABBB-1-1
LED board – PCB design software Cadsoft Eagle
MES monohydrate Duchefa M1503.0100
Micropore Surgical Tape 3M 1530-1
Murashige & Skoog Medium (MS-Medium) Duchefa M0221
Phytagel  Sigma-Aldrich P8169
Sample holder 3D print i.materialise https://i.materialise.de/shop/item/sampleholder-openspim-zeisslightsheetz1
Square petri dishes (245x245x25 mm) VWR 734-2179
Sucrose Sigma-Aldrich 84097-1KG

References

  1. Grossmann, G., Guo, W. -. J., et al. The RootChip: an integrated microfluidic chip for plant science. Plant Cell. 23 (12), 4234-4240 (2011).
  2. Busch, W., Moore, B. T., et al. A microfluidic device and computational platform for high-throughput live imaging of gene expression. Nat Methods. 9 (11), 1101-1106 (2012).
  3. Calder, G., Hindle, C., Chan, J., Shaw, P. An optical imaging chamber for viewing living plant cells and tissues at high resolution for extended periods. Plant Methods. 11 (1), 22 (2015).
  4. Dixit, R., Cyr, R. Cell damage and reactive oxygen species production induced by fluorescence microscopy: effect on mitosis and guidelines for non-invasive fluorescence microscopy. Plant J. 36 (2), 280-290 (2003).
  5. Huisken, J., Swoger, J., Del Bene, F., Wittbrodt, J., Stelzer, E. H. K. Optical Sectioning Deep Inside Live Embryos by Selective Plane Illumination Microscopy. Science. 305 (5686), 1007-1009 (2004).
  6. Keller, P. J., Schmidt, A. D., Wittbrodt, J., Stelzer, E. H. K. Reconstruction of Zebrafish Early Embryonic Development by Scanned Light Sheet Microscopy. Science. 322 (5904), 1065-1069 (2008).
  7. Keller, P. J., Schmidt, A. D., et al. high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy. Nat Methods. 7 (8), 637-642 (2010).
  8. Höckendorf, B., Thumberger, T., Wittbrodt, J. Quantitative Analysis of Embryogenesis: A Perspective for Light Sheet Microscopy. Dev Cell. 23 (6), 1111-1120 (2012).
  9. Stelzer, E. H. K. Light-sheet fluorescence microscopy for quantitative biology. Nat Methods. 12 (1), 23-26 (2015).
  10. Maizel, A., Von Wangenheim, D., Federici, F., Haseloff, J., Stelzer, E. H. K. High-resolution live imaging of plant growth in near physiological bright conditions using light sheet fluorescence microscopy. Plant J. 68 (2), 377-385 (2011).
  11. Sena, G., Frentz, Z., Birnbaum, K. D., Leibler, S. Quantitation of Cellular Dynamics in Growing Arabidopsis Roots with Light Sheet Microscopy. PLoS ONE. 6 (6), e21303 (2011).
  12. Costa, A., Candeo, A., Fieramonti, L., Valentini, G., Bassi, A. Calcium Dynamics in Root Cells of Arabidopsis thaliana Visualized with Selective Plane Illumination Microscopy. PLoS ONE. 8 (10), (2013).
  13. Šamajová, O., Takáč, T., von Wangenheim, D., Stelzer, E. H. K. Update on methods and techniques to study endocytosis in plants. Endocytosis in Plants. , 1-36 (2012).
  14. Rosquete, M. R., Von Wangenheim, D., et al. An auxin transport mechanism restricts positive orthogravitropism in lateral roots. Curr Biol. 23 (9), 817-822 (2013).
  15. Lucas, M., Kenobi, K., et al. Lateral root morphogenesis is dependent on the mechanical properties of the overlaying tissues. Proc Natl Acad Sci USA. 110 (13), 5229-5234 (2013).
  16. Vermeer, J., von Wangenheim, D., et al. A Spatial Accommodation by Neighboring Cells Is Required for Organ Initiation in Arabidopsis. Science. 343 (6167), 178-183 (2014).
  17. Von Wangenheim, D., Daum, G., Lohmann, J. U., Stelzer, E. H. K., Maizel, A. Live Imaging of Arabidopsis Development. Arabidopsis Protocols. 1062, 539-550 (2014).
  18. Berson, T., von Wangenheim, D., et al. Trans-Golgi network localized small GTPase RabA1d is involved in cell plate formation and oscillatory root hair growth. BMC Plant Biol. 14 (1), 252 (2014).
  19. Langhans, M., Meckel, T. Single-molecule detection and tracking in plants. Protoplasma. 251 (2), 277-291 (2014).
  20. Novak, D., Kucharova, A., Ovecka, M., Komis, G., Samaj, J. Developmental nuclear localization and quantification of GFP-tagged EB1c in Arabidopsis root using light-sheet microscopy. Front Plant Sci. 6, (2015).
  21. Von Wangenheim, D., Fangerau, J., et al. Rules and Self-Organizing Properties of Post-embryonic Plant Organ Cell Division Patterns. Curr Biol. 26 (4), 439-449 (2016).
  22. Berthet, B., Maizel, A. Light sheet microscopy and live imaging of plants. J Microsc. , (2016).
  23. Pitrone, P. G., Schindelin, J., et al. OpenSPIM: an open-access light-sheet microscopy platform. Nat Methods. 10 (7), 598-599 (2013).
  24. de Luis Balaguer, M. A., et al. Multi-sample Arabidopsis Growth and Imaging Chamber (MAGIC) for long term imaging in the ZEISS Lightsheet Z.1. Dev Biol. 419 (1), (2016).
  25. Ovečka, M., Vaškebová, L., Komis, G., Luptovčiak, I., Smertenko, A., Šamaj, J. Preparation of plants for developmental and cellular imaging by light-sheet microscopy. Nat Protoc. 10 (8), 1234-1247 (2015).
  26. Yokawa, K., Kagenishi, T., Kawano, T., Mancuso, S., Baluška, F. Illumination of Arabidopsis roots induces immediate burst of ROS production. Plant Signal Behav. 6 (10), 1460-1464 (2011).
  27. Silva-Navas, J., et al. D-Root: a system for cultivating plants with the roots in darkness or under different light conditions. Plant J. 84 (1), 244-255 (2015).
  28. Aoyama, T., Chua, N. -. H. A glucocorticoid-mediated transcriptional induction system in transgenic plants. Plant J. 11 (3), 605-612 (1997).
  29. Brand, L., et al. A versatile and reliable two-component system for tissue-specific gene induction in Arabidopsis. Plant Physiol. 141 (4), 1194-1204 (2006).

Play Video

Cite This Article
von Wangenheim, D., Hauschild, R., Friml, J. Light Sheet Fluorescence Microscopy of Plant Roots Growing on the Surface of a Gel. J. Vis. Exp. (119), e55044, doi:10.3791/55044 (2017).

View Video