Summary

Hurtig Isolering af BMPR-IB + Adipose-afledte stromaceller til brug i en calvariale Defekt Healing Model

Published: February 24, 2017
doi:

Summary

Adipose-derived stromal cells may be useful for engineering new tissue from a patient’s own cells. We present a protocol for the isolation of a subpopulation of human adipose-derived stromal cells (ASCs) with increased osteogenic potential, followed by application of the cells in an in vivo calvarial healing assay.

Abstract

Invasive cancers, major injuries, and infection can cause bone defects that are too large to be reconstructed with preexisting bone from the patient’s own body. The ability to grow bone de novo using a patient’s own cells would allow bony defects to be filled with adequate tissue without the morbidity of harvesting native bone. There is interest in the use of adipose-derived stromal cells (ASCs) as a source for tissue engineering because these are obtained from an abundant source: the patient’s own adipose tissue. However, ASCs are a heterogeneous population and some subpopulations may be more effective in this application than others. Isolation of the most osteogenic population of ASCs could improve the efficiency and effectiveness of a bone engineering process. In this protocol, ASCs are obtained from subcutaneous fat tissue from a human donor. The subpopulation of ASCs expressing the marker BMPR-IB is isolated using FACS. These cells are then applied to an in vivo calvarial defect healing assay and are found to have improved osteogenic regenerative potential compared with unsorted cells.

Introduction

Større knogledefekter skyldes skade, infektion, eller invasiv cancer have en betydelig indvirkning på en patients helbredelse og livskvalitet. Teknikker eksisterer for at udfylde disse fejl med sund knogle fra andre steder i patientens egen krop, men denne overførsel bærer sin egen sygelighed og risiko for komplikationer 1, 2, 3. Desuden er nogle defekter er så stort eller komplekst at tilstrækkelig donor knogle er ikke tilgængelig til at fylde defekten. Proteseindretninger er en potentiel mulighed til fyldning knogledefekter men disse er forbundet med adskillige ulemper, herunder infektionsrisiko, hardwarefejl, og fremmedlegemereaktion 4.

Af disse årsager er der stor interesse i muligheden for engineering biologiske knoglesubstitutter ved hjælp af en patientens egne celler 5. Adipøst afledte stromaceller (ASC'er)har potentiale til denne anvendelse, fordi de er rigeligt til rådighed i patientens eget fedtvæv og de har vist evnen til at helbrede knogledefekter ved at generere nye knoglevæv 6, 7. ASC'er er en forskelligartet population af celler og flere undersøgelser har vist, at selektion for specifikke celleoverflademarkører kan producere cellepopulationer med forøget osteogen aktivitet 8, 9. Valg ASC'er med den højeste osteogene potentiale vil øge sandsynligheden for, at et stillads podet med disse celler kunne regenerere en stor knogledefekt.

Knoglemorfogenetisk protein (BMP) signalering er kritisk for regulering af knogle differentiering og dannelse 10 og BMP receptor type IB (BMPR-IB) vides at være vigtige for osteogenese i ASC'er 11. For nylig har vi vist, at ekspression af BMPR-IB kan be bruges til at vælge for ASC med forbedret osteogen aktivitet 12. Her demonstrerer vi en protokol til isolering af BMPR-IB-udtrykkende ASC'er fra humant fedt efterfulgt af et assay af deres osteogen aktivitet under anvendelse af en in vivo calvariale defekt model.

Protocol

BEMÆRK: Prøver blev opnået fra patienter, som gav informeret samtykke. Alle protokoller blev gennemgået og godkendt af den relevante Stanford University Institutional Review Board. Mens håndtering humane væv og celler, altid holde sig til biosikkerhedsniveau 2 (BSL2) forholdsregler, som angivet af din institution. 1. Fremstilling af reagenser Forbered FACS buffer: 10 ml FBS, 5 mL Poloxamer 188 og 5 ml Pen-Strep til 500 ml steril phosphatbufret saltvand (PBS). Forbe…

Representative Results

Micro CT scanning udført på operationsdagen vil tydeligt vise kraniet defekt. På dette tidspunkt vil der ikke være indvækst i 4 mm defekt. Efterfølgende scanninger opnås over tid for at kvantificere størrelsen af ​​defekten over tid sammenlignet med basislinjen. Defekter podet med BMPR-IB + -celler skal demonstrere hurtigere lukning af defekten i forhold til BMPR-Ib- og Usorterede celler (figur 5). Desuden kan den del af kraniet indeholder defekten afkalkes o…

Discussion

Kritiske trin i protokollen

Under høsten af ​​ASC'er, det afgørende skridt er tilstrækkelig fordøjelse af fedt med collagenase. Utilstrækkelig fordøjelse vil resultere i et lavt udbytte af ASC'er. Under FACS sortering af BMPR-IB + -celler, er det vigtigt nøje at definere gate for positivitet. Definition porte for løst kan resultere i sorterede befolkningsgrupper, der ikke er rene. Under oprettelsen af ​​calvariale defekt, er det kritisk at bore defekten gennem knoglen af…

Disclosures

The authors have nothing to disclose.

Acknowledgements

C.D.M. was supported by the American College of Surgeons (ACS) Resident Research Scholarship. M.S.H. was supported by the California Institute for Regenerative Medicine (CIRM) Clinical Fellow training grant TG2-01159. M.S.H., H.P.L., and M.T.L. were supported by the American Society of Maxillofacial Surgeons (ASMS)/Maxillofacial Surgeons Foundation (MSF) Research Grant Award. H.P.L. was supported by NIH grant R01 GM087609 and a gift from Ingrid Lai and Bill Shu in honor of Anthony Shu. H.P.L. and M.T.L. were supported by the Hagey Laboratory for Pediatric Regenerative Medicine and The Oak Foundation. M.T.L. was supported by NIH grants U01 HL099776, R01 DE021683-01, and RC2 DE020771. D.C.W. was supported by NIH grant 1K08DE024269, the Hagey Laboratory for Pediatric Regenerative Medicine, and the Stanford University Child Health Research Institute Faculty Scholar Award.

Materials

100 micron cell strainer Falcon 352360
15 blade scalpel Miltex 4-515
24 well plate Corning 3524
40 micron cell strainer Falcon 352340
50 mL conical centrifuge tubes Falcon 352098
6-0 Ethilon nylon suture, 18", P-3 needle,  Ethicon 1698G
Anti-BMPR-IB primary antibody R&D systems FAB5051A
BioGel PI surgical gloves Mölnlycke Health Care ALA42675Z
Buprenorphine SR ZooPharm
Castro-Viejo needle driver Fine Science Tools 12565-14
CD1 nude mouse Charles River 086
Collagenase Type II powder Gibco 17101-015
DMEM medium Gibco 10564-011
Drill: Circular knife 4.0 mm Xemax Surgical CK40
Drill: Z500 Brushless Micromotor NSK NSKZ500
FBS Gicbo 10437-077
Fisherbrand Absorbent Underpads, 20" x 24" Fisher Scientific 14-206-62
Fisherbrand Sterile cotton gauze pad, 4" x 4" Fisher Scientific 22-415-469
Heating pad Kent Scientific DCT-20
Hyclone 199/EBSS medium GE  Life Sciences SH30253.01
Isothesia isoflurane Henry Schein  050033
Micro Forceps with teeth Roboz RS-5150
Micro Forceps with teeth Roboz RS-5150
Paraffin film (Parafilm) Bemis PM996
PBS Gibco 10010-023
Pen-Strep Gibco 15140-122
PLGA scaffolds Proprietary Formulation
Poloxamer 188, 10% Sigma P5556-100ML
Polylined Sterile Field, 18" x 24" Busse Hospital Disposables 696 Cut a rectangular hole of the appropriate size
Polysucrose Solution: Histopaque 1119 Sigma 11191
Povidone Iodine Prep Solution Medline MDS093944H
Puralube petrolatum ophthalmic ointment, 1/8 oz. tube Dechra Veterinary Products
RBC lysis buffer Sigma 11814389001
Webcol alcohol prep swabs Covidien 6818

References

  1. Silber, J. S., et al. Donor site morbidity after anterior iliac crest bone harvest for single-level anterior cervical discectomy and fusion. Spine (Phila Pa 1976). 28 (2), 134-139 (2003).
  2. Giannoudis, P. V., Dinopoulos, H., Tsiridis, E. Bone substitutes: an update. Injury. 36, S20-S27 (2005).
  3. Laurencin, C., Khan, Y., El-Amin, S. F. Bone graft substitutes. Expert Rev Med Devices. 3 (1), 49-57 (2006).
  4. Walmsley, G. G., et al. Nanotechnology in bone tissue engineering. Nanomedicine. 11 (5), 1253-1263 (2015).
  5. Chapekar, M. S. Tissue engineering: challenges and opportunities. J Biomed Mater Res. 53 (6), 617-620 (2000).
  6. Levi, B., et al. Human adipose derived stromal cells heal critical size mouse calvarial defects. PLoS One. 5 (6), e11177 (2010).
  7. Gimble, J. M., Katz, A. J., Bunnell, B. A. Adipose-derived stem cells for regenerative medicine. Circ Res. 100 (9), 1249-1260 (2007).
  8. Levi, B., et al. CD105 protein depletion enhances human adipose-derived stromal cell osteogenesis through reduction of transforming growth factor beta1 (TGF-beta1) signaling. J Biol Chem. 286 (45), 39497-39509 (2011).
  9. Chung, M. T., et al. CD90 (Thy-1)-positive selection enhances osteogenic capacity of human adipose-derived stromal cells. Tissue Eng Part A. 19 (7-8), 989-997 (2013).
  10. Wozney, J. M., et al. Novel regulators of bone formation: molecular clones and activities. Science. 242 (4885), 1528-1534 (1988).
  11. Wan, D. C., et al. Osteogenic differentiation of mouse adipose-derived adult stromal cells requires retinoic acid and bone morphogenetic protein receptor type IB signaling. Proc Natl Acad Sci U S A. 103 (33), 12335-12340 (2006).
  12. McArdle, A., et al. Positive selection for bone morphogenetic protein receptor type-IB promotes differentiation and specification of human adipose-derived stromal cells toward an osteogenic lineage. Tissue Eng Part A. 20 (21-22), 3031-3040 (2014).
  13. Sharon, Y., Alon, L., Glanz, S., Servais, C., Erez, N. Isolation of normal and cancer-associated fibroblasts from fresh tissues by Fluorescence Activated Cell Sorting (FACS). J Vis Exp. (71), e4425 (2013).
  14. Lo, D. D., et al. Repair of a critical-sized calvarial defect model using adipose-derived stromal cells harvested from lipoaspirate. J Vis Exp. (68), (2012).
  15. Lester, S. C. . Manual of surgical pathology. , (2010).
  16. Bunnell, B. A., Flaat, M., Gagliardi, C., Patel, B., Ripoll, C. Adipose-derived stem cells: isolation, expansion and differentiation. Methods. 45 (2), 115-120 (2008).
check_url/55120?article_type=t

Play Video

Cite This Article
Marshall, C. D., Zielins, E. R., Brett, E. A., Blackshear, C. P., Hu, M. S., Leavitt, T., Barnes, L. A., Lorenz, H. P., Longaker, M. T., Wan, D. C. Rapid Isolation of BMPR-IB+ Adipose-Derived Stromal Cells for Use in a Calvarial Defect Healing Model. J. Vis. Exp. (120), e55120, doi:10.3791/55120 (2017).

View Video