Summary

目标<em>原位</em>组蛋白突变的基因在芽殖酵母

Published: January 26, 2017
doi:

Summary

A strategy for generating mutations in histone genes at their endogenous location in Saccharomyces cerevisiae is presented.

Abstract

We describe a PCR- and homologous recombination-based system for generating targeted mutations in histone genes in budding yeast cells. The resulting mutant alleles reside at their endogenous genomic sites and no exogenous DNA sequences are left in the genome following the procedure. Since in haploid yeast cells each of the four core histone proteins is encoded by two non-allelic genes with highly homologous open reading frames (ORFs), targeting mutagenesis specifically to one of two genes encoding a particular histone protein can be problematic. The strategy we describe here bypasses this problem by utilizing sequences outside, rather than within, the ORF of the target genes for the homologous recombination step. Another feature of this system is that the regions of DNA driving the homologous recombination steps can be made to be very extensive, thus increasing the likelihood of successful integration events. These features make this strategy particularly well-suited for histone gene mutagenesis, but can also be adapted for mutagenesis of other genes in the yeast genome.

Introduction

四个核心组蛋白H2A,H2B,H3和H4中的压实,组织,和真核染色体的功能发挥中心作用。两套各这些组蛋白的形成的组蛋白八聚体,即指示本身周围的DNA的〜147碱基对的环绕一个分子卷轴,最终导致核小体1的形成。核小体是在各种基于染色体过程,如基因转录的调节和常染色质的形成和异跨染色体积极参与者,因此已经深入研究在过去几十年的过程中的焦点。已经描述了许多机制由核小体可以在方法,可以方便特定进程的执行被操纵 – 这些机制包括组蛋白残基的翻译后修饰,依赖ATP的核小体重构,和ATP依赖性核重组和装配/拆卸2,3。

在芽殖酵母是组蛋白功能的真核生物的理解一个特别强大的模型生物。这在很大程度上归因于整个域真核生物高度组蛋白的进化保守的和酵母的各种遗传和生化实验的方法顺从4。在酵母反向遗传方法已被广泛用于研究染色质生物学的各个方面的具体组蛋白突变的影响。对于这些类型的实验,常常优选使用,其中所述突变体组蛋白从其天然基因组位点表达的细胞,如从自主质粒表达可导致组蛋白的异常细胞内水平(由于细胞不同质粒的数量),并染色质恩伴随变更vironments,它可以混淆最终结果的解释。

在这里,我们描述了一种基于PCR的技术,其允许在不需要在所需突变的生成而不在基因组中剩余的外源DNA序列的克隆步骤和结果其天然基因组的位置的组蛋白的基因的靶向诱变。这种技术利用了有效的同源重组系统的在酵母和具有几个共同的特征与其它组开发的其他类似的技术-尤其是在Delitto普菲 ,位点特异性基因组(SSG)诱变和克隆-自由基于PCR的等位基因替换方法5,6,7。然而,我们描述的技术存在,使得它特别适合于组蛋白基因的突变的一个方面。在单倍体酵母细胞中,每四个核心组蛋白是由两个非一个编码llelic和高度同源的基因:例如,组蛋白H3由HHT1HHT2基因编码,而两个基因的开放阅读框(ORFs)在序列90%以上相同。这种高度的同源性可以变得复杂设计成特异性靶向诱变两个组蛋白编码基因中的一个实验。而上述的方法通常要求使用的靶基因的ORF内的至少一些序列来驱动同源重组,我们在这里描述的技术利用侧翼组蛋白基因的开放阅读框(共用少得多的序列同源性)序列的的重组步骤,从而增加至所需的轨迹诱变成功定位的可能性。此外,驱动重组同源区可以是非常广泛的,从而进一步提高效率的有针对性的同源重组。

Protocol

注:有针对性的原位组蛋白基因突变实验策略包括以下几个步骤( 图1中总结)。这些步骤包括:(1)与URA3基因的靶组蛋白基因的置换,(2)产生与对应于两个使用引物携带所需突变(s)时,目标组蛋白基因的部分重叠的片段的PCR产物的纯化(3 )这两个部分重叠的片段的融合的PCR,以获得充分的大小的PCR产物为一体,(4)的全尺寸的PCR产物和骨架质粒共转化,并选?…

Representative Results

我们描述一个hht2等位基因表达组蛋白H3突变蛋白从精氨酸作为靶向原位诱变策略的代表性例子窝藏在53位的取代为谷氨酸(H3-R53E突变体)的产生。 我们产生其中HHT2的完整ORF被URA3基因(见协议的步骤1)代替的菌株。该菌株,yAAD156,也藏着his3Δ200等位基因,这将导致细胞是营养缺陷型组氨酸。?…

Discussion

序列同源性的高水平的两个非等位基因,对于每个在单倍体酿酒酵母细胞中的四个核心组蛋白的代码可以表示谁希望特异性靶向两个基因诱变之一调查一个挑战之间。先前描述的酵母诱变方法,包括Delitto普菲 ,位点特异性基因组(SSG)诱变和自由克隆基于PCR的等位基因替换方法5,6,7,以及更近的酵母基于CRISPR?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

We thank Reine Protacio for helpful comments during the preparation of this manuscript. We express our gratitude to the National Science Foundation (grants nos. 1243680 and 1613754) and the Hendrix College Odyssey Program for funding support.

Materials

1 kb DNA Ladder (DNA standards) New England BioLabs N3232L
Agarose  Sigma A5093-100G
Boric Acid Sigma B0394-500G
dNTP mix (10 mM each) ThermoFisher Scientific R0192
EDTA solution (0.5M, pH 8.0) AmericanBio AB00502-01000
Ethanol (200 Proof) Fisher Scientific 16-100-824
Ethylenediaminetetraacetic acid disodium salt dihydrate (EDTA) Sigma E4884-500G
Lithium acetate dihydrate Sigma L6883-250G
MyCycler Thermal Cycler BioRad 170-9703
Poly(ethylene glycol) (PEG) Sigma P3640-1KG
PrimeSTAR HS DNA Polymerase (high fidelity DNA polymerase)  and 5X buffer Fisher Scientific 50-443-960
Salmon sperm DNA solution ThermoFisher Scientific 15632-011
Sigma 7-9 (Tris base, powder form) Sigma T1378-1KG
Sodium acetate trihydrate Sigma 236500-500G
Supra Sieve GPG Agarose (low metling temperature agarose) AmericanBio AB00985-00100
Taq Polymerase and 10X Buffer New England BioLabs M0273X
Toothpicks Fisher Scientific S67859
Tris-HCl (1M, pH 8.0) AmericanBio AB14043-01000
a-D(+)-Glucose Fisher Scientific AC170080025 for yeast media
Agar Fisher Scientific DF0140-01-0 for yeast media
Peptone Fisher Scientific DF0118-07-2 for YPD medium
Yeast Extract Fisher Scientific DF0127-17-9 for YPD medium
4-aminobenzoic acid Sigma A9878-100G for complete minimal dropout medium 
Adenine Sigma A8626-100G for complete minimal dropout medium 
Glycine hydrochloride Sigma G2879-100G for complete minimal dropout medium 
L-Alanine Sigma A7627-100G for complete minimal dropout medium 
L-Arginine monohydrochloride Sigma A5131-100G for complete minimal dropout medium 
L-Asparagine monohydrate Sigma A8381-100G for complete minimal dropout medium 
L-Aspartic acid sodium salt monohydrate Sigma A6683-100G for complete minimal dropout medium 
L-Cysteine hydrochloride monohydrate Sigma C7880-100G for complete minimal dropout medium 
L-Glutamic acid hydrochloride Sigma G2128-100G for complete minimal dropout medium 
L-Glutamine Sigma G3126-100G for complete minimal dropout medium 
L-Histidine monohydrochloride monohydrate Sigma H8125-100G for complete minimal dropout medium 
L-Isoleucine Sigma I2752-100G for complete minimal dropout medium 
L-Leucine Sigma L8000-100G for complete minimal dropout medium 
L-Lysine monohydrochloride Sigma L5626-100G for complete minimal dropout medium 
L-Methionine Sigma M9625-100G for complete minimal dropout medium 
L-Phenylalanine Sigma P2126-100G for complete minimal dropout medium 
L-Proline Sigma P0380-100G for complete minimal dropout medium 
L-Serine Sigma S4500-100G for complete minimal dropout medium 
L-Threonine Sigma T8625-100G for complete minimal dropout medium 
L-Tryptophan Sigma T0254-100G for complete minimal dropout medium 
L-Tyrosine Sigma T3754-100G for complete minimal dropout medium 
L-Valine Sigma V0500-100G for complete minimal dropout medium 
myo-Inositol Sigma I5125-100G for complete minimal dropout medium 
Uracil Sigma U0750-100G for complete minimal dropout medium 
Ammonium Sulfate Fisher Scientific A702-500 for complete minimal dropout medium 
Yeast Nitrogen Base Fisher Scientific DF0919-07-3 for complete minimal dropout medium 
5-Fluoroorotic acid (5-FOA) AmericanBio AB04067-00005 for  5-FOA medium

References

  1. Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F., Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 389 (6648), 251-260 (1997).
  2. Campos, E. I., Reinberg, D. Histones: annotating chromatin. Annu Rev Genet. 43, 559-599 (2009).
  3. Rando, O. J., Winston, F. Chromatin and transcription in yeast. Genetics. 190 (2), 351-387 (2012).
  4. Duina, A. A., Miller, M. E., Keeney, J. B. Budding yeast for budding geneticists: a primer on the Saccharomyces cerevisiae model system. Genetics. 197 (1), 33-48 (2014).
  5. Storici, F., Resnick, M. A. Delitto perfetto targeted mutagenesis in yeast with oligonucleotides. Genet Eng (N Y). 25, 189-207 (2003).
  6. Gray, M., Kupiec, M., Honigberg, S. M. Site-specific genomic (SSG) and random domain-localized (RDL) mutagenesis in yeast. BMC Biotechnol. 4, 7 (2004).
  7. Erdeniz, N., Mortensen, U. H., Rothstein, R. Cloning-free PCR-based allele replacement methods. Genome Res. 7 (12), 1174-1183 (1997).
  8. Brachmann, C. B., et al. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast. 14 (2), 115-132 (1998).
  9. Lundblad, V., Hartzog, G., Moqtaderi, Z. Manipulation of cloned yeast DNA. Curr Protoc Mol Biol. Chapter 13, (2001).
  10. Hoffman, C. S. Preparation of yeast DNA. Curr Protoc Mol Biol. Chapter 13, (2001).
  11. Treco, D. A., Lundblad, V. Preparation of yeast media. Curr Protoc Mol Biol. Chapter 13, (2001).
  12. Lederberg, J., Lederberg, E. M. Replica plating and indirect selection of bacterial mutants. J Bacteriol. 63 (3), 399-406 (1952).
  13. Sikorski, R. S., Hieter, P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 122 (1), 19-27 (1989).
  14. Johnson, P., et al. A systematic mutational analysis of a histone H3 residue in budding yeast provides insights into chromatin dynamics. G3 (Bethesda). 5 (5), 741-749 (2015).
  15. DiCarlo, J. E., et al. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. 41 (7), 4336-4343 (2013).
  16. Cross, S. L., Smith, M. M. Comparison of the structure and cell cycle expression of mRNAs encoded by two histone H3-H4 loci in Saccharomyces cerevisiae. Mol Cell Biol. 8 (2), 945-954 (1988).
  17. Libuda, D. E., Winston, F. Amplification of histone genes by circular chromosome formation in Saccharomyces cerevisiae. Nature. 443 (7114), 1003-1007 (2006).
check_url/55263?article_type=t

Play Video

Cite This Article
Duina, A. A., Turkal, C. E. Targeted in Situ Mutagenesis of Histone Genes in Budding Yeast. J. Vis. Exp. (119), e55263, doi:10.3791/55263 (2017).

View Video