Summary

Analyse af lymfocyt Ekstravasation Ved anvendelse af en<em> In vitro</em> Model af humant blod-hjernebarrieren

Published: April 05, 2017
doi:

Summary

Here, we describe a human blood-brain barrier model enabling to investigate lymphocyte transmigration into the central nervous system in vitro.

Abstract

Lymfocyt ekstravasation i centralnervesystemet (CNS) er afgørende for immun overvågning. Sygdomsrelaterede ændringer af lymfocyt ekstravasation kan resultere i patofysiologiske forandringer i CNS. Således undersøgelse af lymfocytmigration i CNS er vigtigt at forstå inflammatoriske CNS-sygdomme og udvikle nye terapi tilgange. Vi præsenterer her en in vitro model af den menneskelige blod-hjerne-barrieren for at studere lymfocyt ekstravasation. Human hjerne mikrovaskulære endotelceller (HBMEC) er confluently dyrkes på et porøst polyethylenterephthalat Transwell indsætte at efterligne endotel af blod-hjerne-barrieren. Barrierefunktion er valideret af zonula occludens immunhistokemi, transendotele elektrisk modstand (TEER) målinger samt analyse af Evans blue permeation. Denne model giver mulighed for undersøgelse af diapedesis af sjældne lymfocytundergrupper såsom CD56 lyse CD16 dim / – NK-celler. Furthermmalm, virkningerne af andre celler, cytokiner og chemokiner, sygdomsrelaterede ændringer og distinkte behandlingsregimer på vandrende kapacitet af lymfocytter kan undersøges. Endelig kan analyseres virkningen af ​​inflammatoriske stimuli samt forskellige behandlingsregimer på endotelbarrieren.

Introduction

Lymfocytmigration fra blodet ind i væv er afgørende for immun overvågning. En sekvens af specifikke molekylære vekselvirkninger sikrer stedspecifik ekstravasation i tyndtarmen, hud, lymfeknuder, centralnervesystemet (CNS), og andre væv 1. Ændringer i lymfocytmigration er involveret i patofysiologien af en række bred spredning sygdomme 2. Migration i immun-priviligerede CNS reguleres stramt og følgelig ændringer af denne proces er involveret i CNS-relaterede sygdomme som encephalomyelitis 3, neuromyelitis optica, slagtilfælde og dissemineret sklerose (MS) 2, 4, 5, 6, 7. Derfor er det vigtigt at studere lymfocyt ekstravasation til bedre at forstå sygdommen patofysiologi og udvikle værktøjer til en melioration af sygdomstilfælde 8, 9, 10, 11, 12.

Lymfocytter migrerer i CNS via distinkte veje. Ekstravasation gennem postkapillære venuler i det subarachnoide rum via blod-cerebrospinalvæske barriere inden choroid plexus og over blod-hjerne-barrieren er blevet beskrevet 1, 13, 14, 15. Migration over blod-hjerne-barrieren udføres ved interaktionen af lymfocytter med endothelceller 14. I modsætning til endotelceller i periferien, endotelceller i CNS udtrykker høje mængder af tight junction-molekyler, hvorved strengt at begrænse mængden af ​​celler og proteiner i stand til at krydse blod-hjerne-barrierenlass = "xref"> 16. Inflammation resulterer i løsning af tight junctions og inducerer ekspressionen af ​​adhæsionsmolekyler; således, øge lymfocytmigrering i CNS 1, 17, 18.

Ekstravasation via blod-hjerne-barrieren er en flertrinsproces. Lymfocytter tøjr til endotelcellerne og derefter rulle langs endotel i en proces hovedsagelig medieret af selectiner 1, 15. Efterfølgende interaktioner mellem kemokiner udskilt af endothelet og de respektive chemokinreceptorer udtrykt på lymfocytter inducerer konformationelle ændringer af integriner og dermed fremme fast adhæsion til endotelcellerne 1. Endelig lymfocytter enten kravle langs endotel barriere mod blodstrømmen inden transmigrating ind i det perivaskulære rum eller stall umiddelbart og direkte transmigrate på stedet for fast adhæsion 1, 19, 20. Alle disse trin af lymfocyt ekstravasation kan analyseres in vitro ved anvendelse distinkte teknikker 21. Time-lapse video mikroskopi bruges til at studere den indledende tethering og rullende 15. Adhæsionsanalyser give detaljerede oplysninger om fast anholdelse at endotelbarrierer 22. Transmigration assays som påvist her tillader analyse af immun-celle transmigration 21, 23, 24, 25, 26, 27, 28, 29.

Anvendelse af det humane in vitro blodhjernebarrieren model, kunne vi for nylig viser, at en højere migrDELSE kapacitet CD56 lyse CD16 dim / – NK-celler i forhold til deres CD56 dim CD16 + modparter blev afspejlet ved en overvægt af dette NK-undergruppe i det intratekale rum 21. Således er vores forsøgsopstilling synes at være egnet til at efterligne in vivo situationen.

Protocol

1. Cell Culture of Human Brain mikrovaskulære endotelceller (HBMEC) Coating af cellekulturkolber Til fremstilling fibronectinopløsningen tilsættes 10 ml PBS til en 15 ml centrifugerør. Tilsæt 150 uL fibronektin og bland godt. At dække bunden en T-25 cellekulturkolbe tilsæt 2 ml fibronectinopløsningen. Inkubér cellekulturkolbe i mindst 3 timer ved 37 ° C i inkubatoren. Fibronectin coatede kolber kan opbevares i 2 uger ved 37 ° C / 5% CO2. Såning og …

Representative Results

Repræsentative resultater, der viser transmigration af NK-celle- og T-celle delmængder ved hjælp af blod-hjerne-barrieren model humane (figur 1A) er vist. Integritet HBMEC monolaget blev valideret ved farvning af tight junction-molekylet ZO-1, transendotele elektrisk modstand (TEER) målinger, og Evans blå permeation (figur 1B). Efter 3 – 4 dage kultur HBMEC udtrykte tight junction molekyle ZO-1 (figur 1B, venstre). Endvidere HBMEC v…

Discussion

Her præsenterer vi en teknik til at undersøge transmigration af lymfocytter på tværs af humant blod-hjerne-barrieren. In vitro analyse af lymfocyt migration til CNS er vigtigt at studere grundlæggende processer af lymfocyt ekstravasation, potentielle sygdomsrelaterede ændringer, og nye terapeutiske fremgangsmåder.

Adskillige modifikationer af blod-hjerne-barrieren model er mulige. For eksempel kunne celler fra det øvre rum analyseres for at undersøge sammensætningen af ​…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This study has been supported by the Collaborative Research Centre CRC TR128 “Initiating/Effector versus Regulatory Mechanisms in Multiple Sclerosis-Progress towards Tackling the Disease” (Project A9 to H.W. and C.C.G., project B1 to N.S.).

Materials

PBS Gibco 14190-094 without CaCl2 or MgCl2
Fibronectin 1mg/mL Sigma F1141-5MG from bovine plasma
T-25 cell culture flask Greiner BioOne 690160
HBMEC ScienCell 1000
Pelobiotech PB-H-6023
Accutase Sigma A6964-100ML
ECM-b ScienCell 1001-b
FBS ScienCell 1001-b
Penicillin/Streptomycin ScienCell 1001-b
Endothelial cell growth supplement ScienCell 1001-b
Transwell Corning 3472 clear, 6.5mm diameter, 3.0µm pore size
96-well flat bottom plate Corning 3596
Evans blue Sigma E2129-10G stock solution: 1 g/50 mL PBS
B27 Gibco 17504-044 50x concentrated
Infinite M200Pro Tecan
96-well black flat bottom plate Greiner BioOne 675086
48-well plate Corning 3526
RPMI 1640 Gibco 61870-010
Flow Count Fluorospheres Beckman Coulter 7547053
Na-EDTA Sigma E5134
BSA Sigma A2153
Gallios 10-color flow cytometer Beckman Coulter
Kaluza 1.5a Beckman Coulter
TNF-α Peprotech 300-01A
IFN-γ Peprotech 300-02
CD3-PerCP/Cy5.5 Biolegend 300430 clone UCHT1
CD56-PC7 Beckman Coulter A21692 clone N901
CD16-A750 Beckman Coulter A66330 clone 3G8
CD4-FITC Biolegend 300506 clone RPA-T4
CD8-A700 Beckman Coulter A66332 clone B9.11

References

  1. Ransohoff, R. M., Kivisakk, P., Kidd, G. Three or more routes for leukocyte migration into the central nervous system. Nat Rev Immunol. 3 (7), 569-581 (2003).
  2. Takeshita, Y., et al. An in vitro blood-brain barrier model combining shear stress and endothelial cell/astrocyte co-culture. J Neurosci Methods. 232, 165-172 (2014).
  3. Furtado, G. C., et al. A novel model of demyelinating encephalomyelitis induced by monocytes and dendritic cells. J Immunol. 177 (10), 6871-6879 (2006).
  4. Ransohoff, R. M. Illuminating neuromyelitis optica pathogenesis. Proc Natl Acad Sci U S A. 109 (4), 1001-1002 (2012).
  5. Petty, M. A., Lo, E. H. Junctional complexes of the blood-brain barrier: permeability changes in neuroinflammation. Prog Neurobiol. 68 (5), 311-323 (2002).
  6. Lopes Pinheiro, M. A., et al. Immune cell trafficking across the barriers of the central nervous system in multiple sclerosis and stroke. Biochim Biophys Acta. 1862 (3), 461-471 (2016).
  7. Holman, D. W., Klein, R. S., Ransohoff, R. M. The blood-brain barrier, chemokines and multiple sclerosis. Biochim Biophys Acta. 1812 (2), 220-230 (2011).
  8. Kleinschnitz, C., Meuth, S. G., Kieseier, B. C., Wiendl, H. Immunotherapeutic approaches in MS: update on pathophysiology and emerging agents or strategies 2006. Endocr Metab Immune Disord Drug Targets. 7 (1), 35-63 (2007).
  9. Kleinschnitz, C., Meuth, S. G., Stuve, O., Kieseier, B., Wiendl, H. Multiple sclerosis therapy: an update on recently finished trials. J Neurol. 254 (11), 1473-1490 (2007).
  10. Wiendl, H., Hohlfeld, R. Multiple sclerosis therapeutics: unexpected outcomes clouding undisputed successes. Neurology. 72 (11), 1008-1015 (2009).
  11. Schwab, N., Schneider-Hohendorf, T., Breuer, J., Posevitz-Fejfar, A., Wiendl, H. JCV index and L-selectin for natalizumab-associated PML risk stratification. Journal of Neuroimmunology. 275 (1-2), 24 (2014).
  12. Schwab, N., et al. L-selectin is a possible biomarker for individual PML risk in natalizumab-treated MS patients. Neurology. 81 (10), 865-871 (2013).
  13. Takeshita, Y., Ransohoff, R. M. Inflammatory cell trafficking across the blood-brain barrier: chemokine regulation and in vitro models. Immunol Rev. 248 (1), 228-239 (2012).
  14. Schwab, N., Schneider-Hohendorf, T., Wiendl, H. Trafficking of lymphocytes into the CNS. Oncotarget. 6 (20), 17863-17864 (2015).
  15. Schneider-Hohendorf, T., et al. VLA-4 blockade promotes differential routes into human CNS involving PSGL-1 rolling of T cells and MCAM-adhesion of TH17 cells. J Exp Med. 211 (9), 1833-1846 (2014).
  16. Girard, J. P., Springer, T. A. High endothelial venules (HEVs): specialized endothelium for lymphocyte migration. Immunol Today. 16 (9), 449-457 (1995).
  17. Brown, D. A., Sawchenko, P. E. Time course and distribution of inflammatory and neurodegenerative events suggest structural bases for the pathogenesis of experimental autoimmune encephalomyelitis. J Comp Neurol. 502 (2), 236-260 (2007).
  18. Alvarez, J. I., Cayrol, R., Prat, A. Disruption of central nervous system barriers in multiple sclerosis. Biochim Biophys Acta. 1812 (2), 252-264 (2011).
  19. Rudolph, H., et al. Postarrest stalling rather than crawling favors CD8+ over CD4+ T-cell migration across the blood-brain barrier under flow in vitro. Eur J Immunol. , (2016).
  20. Bartholomaus, I., et al. Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions. Nature. 462 (7269), 94-98 (2009).
  21. Gross, C. C., et al. Impaired NK-mediated regulation of T-cell activity in multiple sclerosis is reconstituted by IL-2 receptor modulation. Proc Natl Acad Sci U S A. 113 (21), E2973-E2982 (2016).
  22. Gross, C. C., Brzostowski, J. A., Liu, D. F., Long, E. O. Tethering of Intercellular Adhesion Molecule on Target Cells Is Required for LFA-1-Dependent NK Cell Adhesion and Granule Polarization. Journal of Immunology. 185 (5), 2918-2926 (2010).
  23. Grutzke, B., et al. Fingolimod treatment promotes regulatory phenotype and function of B cells. Ann Clin Transl Neurol. 2 (2), 119-130 (2015).
  24. Gobel, K., et al. Blockade of the kinin receptor B1 protects from autoimmune CNS disease by reducing leukocyte trafficking. J Autoimmun. 36 (2), 106-114 (2011).
  25. Schneider-Hohendorf, T., et al. Regulatory T cells exhibit enhanced migratory characteristics, a feature impaired in patients with multiple sclerosis. Eur J Immunol. 40 (12), 3581-3590 (2010).
  26. Huang, Y. H., et al. Specific central nervous system recruitment of HLA-G(+) regulatory T cells in multiple sclerosis. Ann Neurol. 66 (2), 171-183 (2009).
  27. Dehmel, T., et al. Monomethylfumarate reduces in vitro migration of mononuclear cells. Neurol Sci. 35 (7), 1121-1125 (2014).
  28. Gastpar, R., et al. The cell surface-localized heat shock protein 70 epitope TKD induces migration and cytolytic activity selectively in human NK cells. J Immunol. 172 (2), 972-980 (2004).
  29. Gastpar, R., et al. Heat shock protein 70 surface-positive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells. Cancer Res. 65 (12), 5238-5247 (2005).
  30. Vandermeeren, M., Janssens, S., Borgers, M., Geysen, J. Dimethylfumarate is an inhibitor of cytokine-induced E-selectin, VCAM-1, and ICAM-1 expression in human endothelial cells. Biochemical and Biophysical Research Communications. 234 (1), 19-23 (1997).
  31. Rubant, S. A., et al. Dimethylfumarate reduces leukocyte rolling in vivo through modulation of adhesion molecule expression. Journal of Investigative Dermatology. 128 (2), 326-331 (2008).
  32. Hamann, A., et al. Evidence for an accessory role of LFA-1 in lymphocyte-high endothelium interaction during homing. J Immunol. 140 (3), 693-699 (1988).
  33. Shamri, R., et al. Lymphocyte arrest requires instantaneous induction of an extended LFA-1 conformation mediated by endothelium-bound chemokines. Nat Immunol. 6 (5), 497-506 (2005).
  34. Didier, N., et al. Secretion of interleukin-1beta by astrocytes mediates endothelin-1 and tumour necrosis factor-alpha effects on human brain microvascular endothelial cell permeability. J Neurochem. 86 (1), 246-254 (2003).
  35. Abbott, N. J., Dolman, D. E., Drndarski, S., Fredriksson, S. M. An improved in vitro blood-brain barrier model: rat brain endothelial cells co-cultured with astrocytes. Methods Mol Biol. 814, 415-430 (2012).
  36. Lippmann, E. S., Al-Ahmad, A., Azarin, S. M., Palecek, S. P., Shusta, E. V. A retinoic acid-enhanced, multicellular human blood-brain barrier model derived from stem cell sources. Sci Rep. 4, 4160 (2014).
  37. Franke, H., Galla, H. J., Beuckmann, C. T. An improved low-permeability in vitro-model of the blood-brain barrier: transport studies on retinoids, sucrose, haloperidol, caffeine and mannitol. Brain Res. 818 (1), 65-71 (1999).
  38. Abbott, N. J., Dolman, D. E., Patabendige, A. K. Assays to predict drug permeation across the blood-brain barrier, and distribution to brain. Curr Drug Metab. 9 (9), 901-910 (2008).
  39. Cucullo, L., Marchi, N., Hossain, M., Janigro, D. A dynamic in vitro BBB model for the study of immune cell trafficking into the central nervous system. J Cereb Blood Flow Metab. 31 (2), 767-777 (2011).
  40. Booth, R., Kim, H. Characterization of a microfluidic in vitro model of the blood-brain barrier (muBBB). Lab Chip. 12 (10), 1784-1792 (2012).
  41. Eugenin, E. A., et al. CCL2/monocyte chemoattractant protein-1 mediates enhanced transmigration of human immunodeficiency virus (HIV)-infected leukocytes across the blood-brain barrier: a potential mechanism of HIV-CNS invasion and NeuroAIDS. J Neurosci. 26 (4), 1098-1106 (2006).
  42. Ubogu, E. E., Callahan, M. K., Tucky, B. H., Ransohoff, R. M. CCR5 expression on monocytes and T cells: modulation by transmigration across the blood-brain barrier in vitro. Cell Immunol. 243 (1), 19-29 (2006).
  43. Bennett, J., et al. Blood-brain barrier disruption and enhanced vascular permeability in the multiple sclerosis model EAE. J Neuroimmunol. 229 (1-2), 180-191 (2010).
  44. Woolf, E., et al. Lymph node chemokines promote sustained T lymphocyte motility without triggering stable integrin adhesiveness in the absence of shear forces. Nat Immunol. 8 (10), 1076-1085 (2007).
  45. Ando, J., Nomura, H., Kamiya, A. The effect of fluid shear stress on the migration and proliferation of cultured endothelial cells. Microvasc Res. 33 (1), 62-70 (1987).
  46. Lawrence, M. B., Smith, C. W., Eskin, S. G., McIntire, L. V. Effect of venous shear stress on CD18-mediated neutrophil adhesion to cultured endothelium. Blood. 75 (1), 227-237 (1990).
  47. Wolff, A., Antfolk, M., Brodin, B., Tenje, M. In Vitro Blood-Brain Barrier Models-An Overview of Established Models and New Microfluidic Approaches. J Pharm Sci. 104 (9), 2727-2746 (2015).
  48. Cucullo, L., et al. Development of a humanized in vitro blood-brain barrier model to screen for brain penetration of antiepileptic drugs. Epilepsia. 48 (3), 505-516 (2007).
check_url/55390?article_type=t

Play Video

Cite This Article
Schulte-Mecklenbeck, A., Bhatia, U., Schneider-Hohendorf, T., Schwab, N., Wiendl, H., Gross, C. C. Analysis of Lymphocyte Extravasation Using an In Vitro Model of the Human Blood-brain Barrier. J. Vis. Exp. (122), e55390, doi:10.3791/55390 (2017).

View Video